
Summary:
aRtisy is a

developer
platform and

SDK to create

and host
communicating

applications.

The application

logic is in client
side JavaScript

and the server
is just a data

store with

interface to
access data

and events.

The resource

server can be
separate from

the website, in
an on-premise

or cloud, or a

hybrid
deployment.

aRtisy Widgets

are small, light-

weight and
implement

ready-made
communication

scenarios in

HTML/JS/CSS.

Kundan Singh <singh173@avaya.com>

Venkatesh Krishnaswamy <venky@avaya.com>

Problem

Building communicating web applications
leveraging endpoints and cloud resource
service

App

Data

User

(a) app controls

user data

Data

App

User

App

(c) user controls her data

and approves apps

Data

App

User

Data is stored in a

resource server

App runs in the

browser,

or another web

application server

(b) app allows

another to access

Existing social apps suffer

from these problems:

1. Redundancy

2. Application lock-in

3. Rigid data boundary

4. Tied lifetime of data

Resource Model

Browser Web

server

HTTP,

websocket

CGI, PHP,

servlet DB

Browser App

logic

Web

resource

server

HTTP,

websocket

JavaScript

DB

(a) Traditional web application model

(b) Resource-based application model where

app-logic runs in the client browser in JavaScript

App

logic

aRtisy App Builder and Widgets

1. What are the various

communication widgets and

how do they interact and

mash-up at the resource level?

2. How does it provide a generic

signaling path for WebRTC –

emerging web real-time

communications?

3. What various applications

from video chat, video

presence, social wall did we

build using this platform?

4. What are the security,

robustness and interoperability

challenges?

1. Resource server is independent of

web application, e.g., public web-

site can bind to private database.

2. Hierarchical file system style

resources, with JSON for entity

representation.

3. Promotes model-view style

application development, with

resource level app mash-ups.

An example app development in progress for two-party video phone with shared white-board.

