
Integrating VoiceXML with SIP services
Kundan Singh, Ajay Nambi and Henning Schulzrinne

Department of Computer Science, Columbia University, New York, NY 10027
Email: {kns10,an2029,hgs}@cs.columbia.edu

Abstract— We describe our Session Initiation Protocol (SIP)-
based VoiceXML browser, sipvxml, that allows programming
interactive voice response applications that are accessible from
telephones as well as IP phones. We also describe how we have
used sipvxml in our multi-party multimedia conferencing server.
We propose other applications and extensions that can benefit
from this technology in our IP telephony test bed.

I. INTRODUCTION

People are familiar with traditional interactive voice re-
sponse (IVR) systems found in voice mail access, dial-in
conferences, phone-based customer support and tele-banking.
VoiceXML is an XML-based language developed by the
W3C [1] to create voice dialogs that feature synthesized
speech, digitized audio, recognition of spoken and DTMF key
input and recording of audio for telephony applications. It
transforms the traditional proprietary and closed IVR systems
to an open programmable architecture. It brings the advantage
of web technologies to a telephony user by providing pro-
grammable dialogs, similar to HTML forms or CGI scripts.

The Session Initiation Protocol (SIP [7]) is an Internet tele-
phony signaling protocol used for establishing and terminating
Internet multimedia sessions. A SIP-based VoiceXML browser
(or SIP-VoiceXML browser) allows a SIP user to take part
in application-specific IVR systems, e.g., voice mail or tele-
banking. It also brings the advantage of VoiceXML technol-
ogy to a regular telephone user via a SIP-PSTN gateway.
We have developed a SIP-VoiceXML browser, sipvxml, to
enhance the services of our CINEMA test-bed [3], [4], [11].
In particular, we have extended our multimedia conferencing
server, sipconf [12], and unified messaging (voicemail) server,
sipum [14] to provide enhanced services and convenience to
a telephone user.

We describe the architecture of sipvxml in Section II.
Section III describes the use of sipvxml with our conferencing
server. More examples of SIP services enabled by VoiceXML
are described in Section IV. We list some related work in
Section V and conclude in Section VI.

II. ARCHITECTURE

A SIP-VoiceXML browser is similar to a web browser for
a telephone instead of a desktop PC. The browser fetches
the VoiceXML pages or pre-recorded media files from a web
server and presents an interactive dialog to the telephone user.
Fig. 1 shows an example scenario where the browser can be
accessed from SIP phones as well as a regular telephone. The
VoiceXML pages can either be statically stored on the web

server or be dynamically generated by server-side program-
ming logic like HTTP-CGI (Common Gateway Interface), Java
servlet or Java server pages. The media files can either be
stored on the web server or can be streamed in real-time
from an RTSP [10] media server, such as our rtspd, directly
to the SIP caller using RTP [8]. Instead of providing other
call control interfaces (e.g., H.323, MGCP) to the VoiceXML
browser, we can use external gateways like our SIP-H.323
translator [13] for a simple and modular implementation.

IP soft-phone

Fetch
VoiceXML
pages Web server

(CGI, Servlet, JSP)

Media server
(media files)

Get streaming media

SIP based
VoiceXML
browser

Telephone

SIP-PSTN
 gateway

Call request

IP hardware phone

PSTN

Fig. 1. Example sipvxml scenario

A. VoiceXML page

The following example VoiceXML page prompts the caller
with spoken audio: “Enter the ZIP code ...”. When the user
presses a sequence of digits, say 10027#, the variable zip-
code gets the value “10027” that gets passed to the URL
http://myserver.com/weather.cgi?zipcode=10027. It is up
to the script weather.cgi to process the input and generate
further VoiceXML pages. If there is some error or the user
doesn’t press anything, then the prompt is repeated.

<?xml version="1.0"?>
<vxml version="1.0">
<form>
<field name="zipcode">
<prompt>Enter the ZIP code of the location
for its weather information.</prompt>

</field>
<catch event="noinput error help">
Enter the ZIP code again followed by the
pound key.</catch>
<block>
<submit next="http://myserver.com/weather.cgi"

namelist="zipcode"/>
</block>
</form>
</vxml>

We have implemented a very simple DTMF grammar. A
typical explicit dtmf tag in the VoiceXML page looks like:

<dtmf type="application/x-dtmf">
1 | 2 | 3 | 4 | *

</dtmf>

Input is either a fixed length string or is terminated by a “#”.
An implicit timeout of 5 seconds is implemented so that the
input is automatically accepted if the user does not press the
terminating “#” key for some time. If no grammar is specified,
then the interpreter will accept any input. Users can press
“**#” anytime to signal the help event.

We have implemented only a subset of VoiceXML tags as
needed in our application: assign, audio, block, catch, clear,
disconnect, dtmf, error, exit, field, filled, form, goto, help,
noinput, nomatch, prompt, submit, value, var and vxml. We
do not support any client side script (e.g., JavaScript) usually
needed for arithmetic or string operations in the browser, as
the same effect can be achieved using server side processing.

B. Operation of the browser

On new incoming
SIP call

recognition
Grammar
matching interpretation

XML
parser

Detect
DTMF

Speech

rules algorithm

Form

fetcher
Http

text to
speech SDK

RTP/RTCP

RTP/RTCP

(1)

Web
server

Web
server

Interpreter
thread

(2)

(4)

(5)

(11)

(15)

(7)
(6)

(12)

(14)
(13)

(3)

(8)
(9)

(10)

RTP
send
thread

(16)

RTP
receive
thread

SIP interface

RTP
interface

INVITE

SIP

Fig. 2. Operation of sipvxml

Fig. 2 shows the components of our SIP-VoiceXML
browser, sipvxml. We use our SIP library1 for implementing
a SIP interface, the RTP library2 for the RTP/RTCP interface,
the Apache’s XML parser3 with DOM interface, an HTTP
fetcher4 for getting non-XML pages and IBM ViaVoice Text-
To-Speech SDK5 for speech synthesis.

When the browser receives a new incoming SIP call it
creates three different threads: the RTP receive thread, RTP
send thread, and the VoiceXML interpreter thread (1). The
RTP receive thread receives media packets from the caller
and invokes the DTMF detection module. The RTP send
thread streams out media packets to the caller. A separate
send thread helps in maintaining a constant bandwidth
(e.g., 64 kb/s for G.711 audio) for outgoing packets
independent of the speed of the speech synthesizer. The initial

1http://www.cs.columbia.edu/IRT/cinema/siplib
2http://www.cs.columbia.edu/IRT/cinema/rtp-library.html
3http://xml.apache.org
4http://cs.nmu.edu/˜ lhanson/http fetcher/
5http://www-4.ibm.com/software/speech/dev/ttssdk linux.html

VoiceXML page URL can be preconfigured in the browser
or encoded in the SIP request [6]. For example, if the caller
dials sip:dialog.vxml.http%3a//dialogs.com/s32.vxml
@vxmlservers.com then the call will reach
the browser running at vxmlservers.com and
it will fetch the initial VoiceXML page from
http://dialogs.com/s32.vxml. On the other
hand, if the request-uri is sip:7137@cs.columbia.edu,
then the interpreter is invoked with the default pre-configured
initial VoiceXML URL, e.g., that of the conferencing service.

The interpreter thread calls the XML parser with the ini-
tial URL (2). The XML parser fetches the page from the
web server (3) or a local file system (based on the initial
URL). It presents the returned XML document into a tree
data structure (4). The interpreter thread invokes the Form
Interpretation Algorithm (FIA [1]) on the selected form from
the VoiceXML document (5). The FIA invokes various other
modules based on the content of the VoiceXML document
(6). For example, it can invoke the text-to-speech SDK to
synthesize any prompts. The current implementation does not
use any speech recognition engine because user input is via
touch-tone keys. The FIA can also invoke the HTTP fetcher
module to fetch an external grammar file or a media file for an
audio prompt (7). The XML parser has its own HTTP client
to fetch VoiceXML pages. The HTTP fetcher implements a
simple HTTP GET method to retrieve a document (8). The
media file is fragmented into 20 ms packets for interactive
telephony, and enqueued for streaming out to the caller by
the send thread (9). The speech synthesizer output is also
fragmented and enqueued for delivery to the caller (10).

The VoiceXML document can specify the grammar rules in
various scopes (e.g., local or global scope) in the document.
The FIA can set the active grammar for the matching engine
based on the current execution scope in the document (11).

The RTP receive thread receives RTP media packets and
invokes the DTMF detector (12). Any detected DTMF digit is
passed to the grammar matching engine (13). DTMF tones can
be transported from the caller to the browser in a number of
ways. One approach is to not distinguish them from the spoken
voice by encoding them using the same audio codec. However,
a low bandwidth audio codec may distort the properties of
the in-band DTMF tones making them hard to detect. A
second, preferred way is to use “telephone-event” packets [9]
containing the digit codes instead of the encoded audio in
RTP packets. In the first case, the browser has to do the DTMF
detection, whereas in the second case the caller or the gateway
has to do the DTMF detection. The RTP receive module
forwards telephone-events directly to the grammar matching
engine (14). We have implemented both methods. The third
method of transporting DTMF in SIP INFO message is not
used in our implementation. The grammar matching engine
tries to match the received digits with any active grammar,
and informs the FIA if a match is found (15). The RTP send
thread periodically sends media packets to the caller (16). No
packets are sent during silence.

III. MULTI-PARTY CONFERENCING

Consider a SIP conferencing system where users join
the conference by dialing a conference URI such as
sip:staffmeet@conference.com. A regular telephone user
with only a touch-tone phone cannot dial such a generic URI.
We can assign one phone number per conference for direct in-
ward dialing. However, it is preferred that the user always dials
the number of the VoiceXML browser that in turn prompts him
for the authentication PIN (personal identification number) and
conference number. Once the user is authenticated the browser
transfers the call to the selected conference. One can also use
a single PIN to identify both the participant as well as the
conference.

BYE

 202 Accepted

with credentials

200 OK (accepted)

(1) INVITE sip:7137@server.com

VoiceXML browserUser SIP phone

(8) REFER to sip:staffmeet@conference.com

(9) INVITE sip:staffmeet@conference.com

ACK (confirmed)

200 OK (call closed)

200 OK (call closed)

BYE (user ends the call)

Conference server

Database

allowed to join?
(7) is user

(4) user auth/
identification

(10) User talks/listens to the conference server directly

(6) 2−3−#

identifier you want to join
(5) enter the conference

(3) 1−2−3−4−#

four digit PIN code.
(2) Welcome, please enter your

200 OK (accepted)

(9)

(8)

(1)

(b) Architecture

(a) Message flow

1234=>Alice

(4) (7)

Alice is allowed

23=>staffmeet

Alice

Fig. 3. Method 1: Joining conference in blind transfer mode

Fig. 3 shows how an user, say Alice, interacts with the
browser before joining the conference.

1) Alice dials the browser’s phone number (212-939-7137)
or SIP URI (sip:7137@server.com).

2) The browser accepts the call and prompts the caller to
enter the PIN for identification.

3) Alice keys in her PIN, 1-2-3-4, followed by a terminat-
ing # key. The DTMF digits are sent in RTP.

4) The browser looks up the database and identifies the
caller as “Alice”.

5) Based on her privileges, the browser prompts her with
a list of conferences to choose from.

6) Alice picks up the conference with identifier 23.

7) The browser again checks if Alice is allowed to join
the conference identified by number 23, which in this
example is sip:staffmeet@conference.com.

8) Once the authentication is done, the browser transfers
the call to the actual conference server using the SIP
REFER method [15] containing the SIP URI of the
conference.

9) Alice’s phone accepts the transfer and initiates a new
call to the conference server.

10) Alice’s phone exchanges audio with the conference
server directly, without going through the browser.

Note that the user authentication, conference look up and
transfer are actually invoked by the conference service CGI
scripts, whereas the browser just interprets the VoiceXML
pages generated by the scripts to do the actual transfer or
prompt the caller. For instance, the service script may generate
the following transfer tag for the call transfer in step (9).

<block><prompt>Your call is being transferred,
please wait.</prompt></block>
<transfer dest="sip:staffmeet@conference.com"
bridge="false" />

The transfer can be done in two modes: blind and bridged.
The former is the transfer of the call to the conference server
without consulting the server whereas the latter is the transfer
after consulting such that the browser may choose to be in the
media path. We have implemented the blind call transfer as
shown in Fig. 3.

with credentials

 202 Accepted

200 OK (call closed)
BYE

(9) User talks/listens to the browser

200 OK

BYE (user ends the call)

VoiceXML browserUser SIP phone

Call request+authentication

(1)−(7)
(8) INVITE sip:staffmeet@conference.com

(1)

(8)

(a) Message flow (b) Architecture

(4) (7)

Alice

Fig. 4. Method 2: Joining conference using bridged mode

Fig. 4 shows the bridged transfer case with the browser as
a “back-to-back-user-agent” bridging the audio path between
the user phone and the conference server. Steps 1 to 7 are the
same as the blind transfer case. Instead of sending REFER,
the browser sends a new call request to the conference server
identifying the conference sip:staffmeet@conference.com
in the Request-URI of the SIP INVITE message. The browser
acts as an application level packet forwarder in both directions
for RTP/RTCP media traffic.

The advantage of bridged transfer is that the browser
remains in the media path and can accept future control com-
mands (using DTMF) from the user phone. For conferencing,
it may be useful to interpret DTMF, e.g., 6-6-# to mute your
audio or 6-8-# to join another virtual chat/conference room.

Secondly, the browser needs to forward other signaling mes-
sages also, e.g., re-INVITE from the caller to the conference
server. Moreover, maintaining packet forwarding states for the
duration of the conference limits the number of simultaneous
callers the browser can handle. The browser may issue re-
INVITEs with updated transport addresses for RTP/RTCP to
both the caller and the conference server such that the media
path is direct. However, this still needs the signaling state to
be maintained for the duration of the call. On the other hand,
a blind transfer does not require any call state in the browser
for the duration of the conference. But the caller’s IP phone
has to support the REFER method.

IV. OTHER SERVICES

This section describes some of the current and future
services that can be provided using VoiceXML in our SIP
environment.

A. Unified messaging – voice mail

Sipum is a SIP/RTSP-based unified messaging system that
provides a centralized voice mail and answering machine ser-
vice. For example, when Alice calls bob@cs.columbia.edu,
the SIP server in the cs.columbia.edu domain forks the call
request to both Bob’s IP phone and the answering machine
(sipum). If Bob picks up the phone, the call request to sipum
is cancelled. If Bob does not pick up the phone after 10
seconds, sipum accepts the call on Bob’s behalf and prompts
the caller, Alice, to leave voice message. The same application,
sipum, is also used by Bob to retrieve his voice mails, for
example, by dialing a URL sip:bob-672-retrieve@sipum-
host.cs.columbia.edu to retrieve the message with ID 672.
There are other ways of retrieving voice mails, for instance,
using a web browser or a media client. However, none of these
are appropriate for a telephone user with limited touch tone
capability. We use sipvxml with application-level logic for
voice mail service to allow more interactive interface to access
and manage the voice mail box. From a user’s perspective this
is similar to the traditional voice mail service. However, use of
SIP and VoiceXML allows easy integration with web, email,
instant messaging, and telephone.

The application logic to perform voice mail service is built
as CGI scripts executed in the browser’s context. Once the
user is authenticated using PIN, the main menu is spoken out.
This includes options for playing out new voice messages and
other details like sender, subject and timestamp of the message.
In VoiceXML, the audio for playback or recording can be a
local file or an URL. A RTSP URL allows streaming of actual
voice message from a media server (e.g., rtspd) directly to the
caller phone using RTP. We also provide additional options
like saving or deleting the message.

B. Email by phone

Email is one of the most convenient forms of commu-
nication. However, convenience is limited by the necessity
of an Internet connected computer. Our “email-by-phone”
system [5] solves this problem by allowing people to check

and send their emails over any telephone. The server side
application logic is implemented using Java Server Pages and
Java Servlet. These programs generate VoiceXML pages based
on the mail box content and user input.

C. Event notification and scheduling

Asynchronous event notification is useful when polling for
the event is inefficient. For example, the email-by-phone sys-
tem can be modified to notify the user of any important email
by calling the user’s cell phone. Text-to-speech synthesis is
used to play out the email content on the phone. Alternatively,
the user can go to a web page and schedule a birthday reminder
or wakeup call by recording his own audio announcement or
a text message. The system notifies the user by phone at the
scheduled time. These simple systems do not need VoiceXML.
However, a VoiceXML browser is needed to allow the user to
schedule events from a phone, or to “snooze” and be notified
again after a short while. We are extending sipvxml to allow
initiating a new call for notification.

D. Audio volume level for conference

Multi-party audio conferencing among heterogeneous
clients with different audio devices causes annoying distortion
of audio. Some participants are heard very loud and some are
not heard at all. Ideally, the conference server should balance
the input audio level from the participants before mixing.
However, this imposes additional processing requirement on
the server for every audio packet. Another approach is to tell
the participant to adjust his volume level for both microphone
and speaker. The participant connects to a “audio level feed-
back” system before joining the conference and speaks into
it. The systems announces if the user’s microphone volume is
acceptable, too high or too low. The system also plays back
a pre-recorded audio file and allows the user to adjust his
speaker volume. This processing is built in a server side CGI
script that is accessible via a VoiceXML browser.

E. Advanced conference control

Our current conference server implementation provides a
web interface for floor control by the moderator and participant
list display. We can extend it such that conference control
can be done using the same telephone that the participant or
moderator is using for the conference.

F. Integrating speech recognition

Our current implementation accepts user input only via
DTMF digits. VoiceXML is designed for spoken audio input
as well as DTMF. Allowing both mechanisms will improve
the user experience.

G. Security

Every Internet system should deal with security. Our archi-
tecture has three places where security needs to be considered:
telephony gateway, SIP signaling and RTP media transport,
and HTTP/RTSP access to the backend servers. Telephony
gateway and SIP security are explained in the CINEMA

technical report [11]. HTTP and RTSP can use simple shared
secret [2] or more secure Transport Layer Security (TLS).

In the bridged transfer case, sipvxml authenticates the
caller using a PIN and provides its own credentials to the
conference server in SIP authentication. In the blind transfer
case, if the caller is using a regular phone connected via a
gateway, the SIP authentication will contain the credentials of
the gateway. To prevent malicious users from connecting to a
restricted conference, we pass the credentials from sipvxml
to the caller’s gateway in the REFER message, which in turn
is used by the caller’s gateway to call the conference server.
The credentials can be that of the browser or the caller. For
example, Refer-To header may contain sip:staffmeet-
<timestamp:hash>@conference.com, where
<timestamp:hash> is base-64 encoded and hash
is the MD5 hash of “browser-host:timestamp:shared-secret”.
The scheme works only when the conference server can
interpret this URI. The server should reject the call if the
timestamp is old, to prevent replay attack.

The browser should use HTTP POST method, instead of
GET, to avoid storing CGI input in the web server log.

V. RELATED WORK

The Voice Browser working group of world wide web
consortium (W3C) is improving the VoiceXML [1] specifi-
cation. VoiceXML applications for interactive voice response
are developed by many commercial organizations. Plum Voice
Portal Technology6 can present existing websites or intranet
applications to a phone user. It can also deliver follow-up
information via email or fax. Open VXI7 is an open source
VoiceXML interpreter. IBM’s WebSphere provides HTML-to-
VoiceXML transcoding that can be converted to speech by a
VoiceXML browser. Talking E-Mail8 allows users to access
emails from various interfaces including voice, i-mode, Web
and WAP. None of these applications use SIP for call control.

Rosenberg et al. [6] describe a SIP interface to VoiceXML
dialog servers including SIP URI for VoiceXML service and
message flows for blind and bridged call transfer. Tellme
studio9 provided the first SIP-based VoiceXML development
platform that allows users to test custom VoiceXML pages
or scripts. We used this for initial testing of our email-by-
phone system. Our work describes the design of a SIP-based
VoiceXML browser and its application in our IP telephony
test bed. At the time of writing, ours is the only known
implementation that associates the VoiceXML transfer tag
with the SIP REFER message for a conferencing application.
Moreover, sipvxml can be used as a third-party voice appli-
cation server like Tellme or an integrated component in the
CINEMA architecture [3], [4], [11] for campus or enterprise
VoIP services.

6http://www.voicexml-ivr.com/solutions/intro.html
7http://www.speechworks.com/products/voicexml/openvxi.cfm
8http://www.voice3g.com/appblocks.htm
9http://www.tellme.com

VI. CONCLUSIONS

VoiceXML is a powerful technology that allows telephone
users to access services that are typically available to web
users. SIP interface to a VoiceXML browser allows such
services from a IP telephone as well as a regular telephone, via
a gateway, using the call transfer feature in an interoperable
manner. We have implemented a simple SIP-based VoiceXML
browser and used it to allow telephone users to connect to
our conferencing server. This along with other services that
we have implemented will help users to join a conference,
check emails and stay informed from anywhere, thus enabling
ubiquitous availability. We are extending our IP telephony test
bed to incorporate various voice based services like accessing
unified messages, event notification and scheduling, email
notification and conference control via a telephone. We are
also enhancing sipvxml to support VoiceXML version 2.0.

ACKNOWLEDGEMENTS

Daniel Liu and Naho Ogasawara implemented email-
by-phone using Tellme studio. Sean Mandel and Visda
Vokhshoori implemented parts of sipvxml. The work is sup-
ported by grants from SIP Communications, Inc.

REFERENCES

[1] VoiceXML specification. Voice browser working group of world wide
web consortium. http://www.w3c.org/voice/.

[2] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. J. Leach,
A. Luotonen, and L. Stewart. HTTP authentication: Basic and digest
access authentication. RFC 2617, Internet Engineering Task Force, June
1999.

[3] W. Jiang, J. Lennox, S. Narayanan, H. Schulzrinne, K. Singh, and X. Wu.
Integrating Internet telephony services. IEEE Internet Computing,
6(3):64–72, May 2002.

[4] W. Jiang, J. Lennox, H. Schulzrinne, and K. Singh. Towards junking
the PBX: deploying IP telephony. In Proc. International Workshop on
Network and Operating System Support for Digital Audio and Video
(NOSSDAV), Port Jefferson, New York, June 2001.

[5] D. Liu and N. Ogasawara. Project: Email by phone using voicexml,
May 2001. http://www.cs.columbia.edu/˜kns10/projects/.

[6] J. Rosenberg. A SIP interface to voicexml dialog servers. Internet draft,
Internet Engineering Task Force, July 2001. Work in progress.

[7] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. R. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: session initiation protocol.
RFC 3261, Internet Engineering Task Force, June 2002.

[8] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP:
a transport protocol for real-time applications. RFC 1889, Internet
Engineering Task Force, Jan. 1996.

[9] H. Schulzrinne and S. Petrack. RTP payload for DTMF digits, telephony
tones and telephony signals. RFC 2833, Internet Engineering Task Force,
May 2000.

[10] H. Schulzrinne, A. Rao, and R. Lanphier. Real time streaming protocol
(RTSP). RFC 2326, Internet Engineering Task Force, Apr. 1998.

[11] K. Singh, W. Jiang, J. Lennox, S. Narayanan, and H. Schulzrinne.
CINEMA: columbia internet extensible multimedia architecture. techni-
cal report CUCS-011-02, Department of Computer Science, Columbia
University, New York, New York, May 2002.

[12] K. Singh, G. Nair, and H. Schulzrinne. Centralized conferencing using
SIP. In Internet Telephony Workshop, New York, Apr. 2001.

[13] K. Singh and H. Schulzrinne. Interworking between SIP/SDP and H.323.
In IP-Telephony Workshop (IPtel), Berlin, Germany, Apr. 2000.

[14] K. Singh and H. Schulzrinne. Unified messaging using SIP and RTSP.
In IP Telecom Services Workshop, pages 31–37, Atlanta, Georgia, Sept.
2000.

[15] R. Sparks. SIP call control - transfer. Internet draft, Internet Engineering
Task Force, July 2001. Work in progress.

