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Abstract: We apply some of the existing web server re-
dundancy techniques for high service availability and scal-
ability to the relatively new IP telephony context. The
paper compares various failover and load sharing methods
for registration and call routing servers based on the Ses-
sion Initiation Protocol (SIP). In particular, we consider
SIP server failover techniques based on the clients, DNS
(Domain Name Service), database replication and IP ad-
dress takeover, and load sharing techniques using DNS,
SIP identifiers, network address translators and servers
with same IP addresses. We describe our two-stage reli-
able and scalable SIP server architecture in which the first
stage proxies the request to one of the second stage server
group based on the destination user identifier. We quan-
titatively evaluate the performance improvement of the
load sharing architecture using our SIP server. Addition-
ally, we present an overview of the failover mechanism
we implemented in our test-bed using the open source
MySQL database.

1 INTRODUCTION

The Session Initiation Protocol (SIP) [1] is a distributed
signaling protocol for IP telephony. SIP-based telephony
services have been proposed as an alternative to the clas-
sical PSTN (public switched telephone network) and of-
fers a number of advantages over the PSTN [2]. Tradi-
tionally, telephony service is perceived as more reliable
than the Internet-based services such as web and email.
To ensure wide acceptance of SIP among carriers, SIP
servers should demonstrate similar quantifiable guaran-
tees on service availability and scalability. For example,
PSTN switches have a “5 nines” reliability requirement,
i.e., are available for 99.999% of the time, which implies
at most 5 minutes of outage a year.

The SIP proxy servers are more light-weight compared
to PSTN switches because they only route call signaling
messages without maintaining any per-call state. The SIP
proxy server of a domain is responsible for forwarding the
incoming requests destined for the logical address of the
form user@domain to the current transport address of the
device used by this logical entity, and forwarding the re-
sponses back to the request sender. Consider the example
shown in Fig. 1. When a user, Bob, starts his SIP phone,

it registers his unique identifier bob@home.com to the SIP
server in the home.com domain. The server maintains
the mapping between his identifier and his phone’s IP ad-
dress. When another user, Alice, calls sip:bob@home.com,
her phone does a DNS (Domain Name Service) lookup
for the SIP service [3] of home.com and sends the SIP
call initiation message to the resolved server IP address.
The server “proxies” the call to Bob’s currently registered
phone. Once Bob picks up the handset, the audio pack-
ets can be sent directly between the two phones without
going through the server. Further details [2, 1] of the call
are skipped for brevity.
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Figure 1: An example SIP call

If the server fails for some reason, the call initiation or
termination messages cannot be proxied correctly. (Note
that the call termination message need not traverse proxy
servers unless the servers record-route.) We can improve
the service availability by adding a second server that
automatically takes over in case of the failure of the first
server. Secondly, if there are thousands of registered users
and a single server cannot handle the load, then a second
server can work along with the first server such that the
load is divided between the two. Our goal is to provide
the carrier grade capacity of one to ten million BHCA
(busy hour call attempts) for IP telephony using com-
modity hardware. We describe some of the failover and
load sharing techniques for SIP servers in Section 3 and
4, respectively. These techniques also apply beyond tele-
phony, for example, for SIP-based instant messaging and
presence that use the same SIP servers for registration
and message routing. Section 5 quantitatively evaluates
the performance improvement of our load sharing archi-
tecture.

2 RELATED WORK

Failover and load sharing for web servers is a well-studied
problem [4, 5, 6, 7]. TCP connection migration [8], IP



address takeover [9] and MAC address takeover [10] have
been proposed for high availability. Load sharing via con-
nection dispatchers [11] and HTTP content or session-
based request redirection [12, 13, 10] are available for
web servers. Some of these techniques such as DNS-
based load sharing [14, 15] also apply to other Internet
services like email and SIP. Although SIP is an HTTP
like request-response protocol, there are certain funda-
mental differences that make the problem slightly differ-
ent. For example, SIP servers can use both TCP and UDP
transport, the call requests and responses are usually not
bandwidth intensive, caching of responses is not useful,
and the volume of data update (REGISTER message) and
lookup (INVITE message) is often similar, unlike common
read-dominated database and web applications.

Section 3.5 describes how to apply the IETF’s Reliable
Server Pooling (Rserpool [16, 17]) architecture for SIP
telephony. The primary disadvantage of Rserpool is that
it requires new protocol support in the clients.

SIP-based telephony services exhibit three bottlenecks
to scalability: signaling, real-time media data and gate-
way services. The signaling part requires high request
processing capacity in the SIP servers. The data part re-
quires enough network bandwidth and capacity (CPU and
memory) in the end systems. The gateway part requires
optimal placement of media gateways and switching com-
ponents [18]. This paper focuses on the signaling part
only. SIP allows redirecting a request to a less loaded
server using the 302 response, or transferring an existing
call dialog to a less loaded endpoint or gateway [1, 19].

3GPP’s IP Multimedia Subsystem (IMS) uses SIP for
call control to support millions of users. It defines dif-
ferent server roles such as outbound proxy in visited net-
work, interrogating proxy as the first point of contact for
incoming calls in the home network, and serving proxy
providing services based on subscriber’s profile.

We describe and compare some of these techniques in
the context of SIP. We also present an overview of our
implementation of failover and describe some practical
issues.

3 AVAILABILITY: FAILOVER

High availability is achieved by adding a backup com-
ponent such as the SIP server or user record database.
Depending on where the failure is detected and who does
the failover, there are various design choices: client-based,
DNS-based, database failover and IP takeover.

3.1 Client-based failover
In the client-based failover (Fig. 2), Bob’s phone knows
the IP addresses of the primary and the backup servers,
P1 and P2. It registers with both, so that either server
can be used to reach Bob. Similarly, Alice’s phone also
knows about the two servers. It first tries P1, and if that
fails it switches to P2.
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Figure 2: Client-based
failover
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All failover logic is built into the client. The servers op-
erate independently of each other. This method is used
by the Cisco IP phones [20]. Configuring phones with the
two server addresses works well within a domain. How-
ever, DNS is used to allow adding or replacing backup
servers without changing the phone configurations as de-
scribed next.

3.2 DNS-based failover
DNS-based failover using NAPTR and SRV records is the
most clean and hence, preferred way, to failover [3]. For
instance, Alice’s phone can retrieve the DNS SRV [14]
record for sip. udp.home.com to get the two server ad-
dresses (Fig. 3). In the example, P1 will be preferred over
P2 by assigning a lower numeric priority value to P1.

Alternatively, dynamic DNS can be used to update the
A-record for home.com from the IP address of P1 to P2,
when P1 fails. P2 can periodically monitor P1 and update
the record when P1 is dead. Setting a low time-to-live
(TTL) for the A-record bindings can reduce the failover
latency due to DNS caching [21].

3.3 Failover based on database repli-
cation
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Figure 4: Failover based on database replication

Not all the SIP phones are capable of registering with
multiple servers. Moreover, to keep the server failover
architecture independent of the client configuration, the
client can register with only P1, which can then propagate
the registration to P2. If a database is used to store the
user records, then replication can be used as shown in
Fig. 4. Bob’s phone registers with the primary server,
P1, which stores the mapping in the database D1. The
secondary server, P2, uses the database D2. Any change
in D1 is propagated to D2. When P1 fails, P2 can take
over and use D2 to proxy the call to Bob. There could be
small delay before D2 gets the updated record from D1.



3.4 Failover using IP address takeover
If DNS-based failover cannot be used due to some reason
(e.g., not implemented in the client), then IP takeover [9]
can also be used (Fig. 5). Both P1 and P2 have identi-
cal configuration but run on different hosts on the same
Ethernet. Both servers are configured to use the external
master database, D1. The slave D2 is replicated from D1.
The clients know the server IP address as P1’s 10.1.1.1 in
this example.
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Figure 5: When the
primary server fails
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P2 periodically monitors the activity of P1. When P1

fails, P2 takes over the IP address 10.1.1.1. Now, all re-
quests sent to the server address will be received and pro-
cessed by P2. When D1 fails, P1 detects and switches to
D2 (Fig. 6). IP takeover is not used by D2 since the the
SIP servers can be modified to switch over when D1 fails.
There can be a small failover latency due to the ARP
cache.

The architecture is transparent to the rest of the net-
work (clients and DNS) and can be implemented without
external assumptions. However, if the replication is only
from the master to the slave, it requires modification in
the SIP server software to first try D1, and if that fails use
D2 so that all the updates are done to the master server.
To avoid replicating the database, P1 can propagate the
REGISTER message also to P2.

Alternatively, to avoid the server modification, the
server and the associated database can be co-located on
the same host as shown in Fig. 7. If the primary host fails,
both P2 and D2 take over. P1 always uses D1, whereas
P2 always uses D2.

3.5 Reliable server pooling
In the context of IETF’s Reliable Server Pooling archi-
tecture [16], Fig. 8 shows the client phone as the pool
user(PU), P1 and P2 as the pool elements (PE) in the
“SIP server pool”, and D1 and D2 as PEs in the “database
pool”. P1 and P2 register with their home name server,
NS2, which supervises them, and informs the other name
servers (NS) about these PEs. Similarly, D1 and D2 also
register with the NS. The SIP servers are the pool users
of the “Database pool”. A pool element is removed from
the pool if it is out of service.

SIP server pool
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Name Servers

name resolution register server
in the pool

register

access server pool

access server poo

Client (PU)

Pool elements

Pool elements

P1 P2

NS1 NS2 DB2DB1

Figure 8: Reliable server pooling for SIP

When the client wants to contact the “SIP server pool”,
it queries one of the name servers, NS1, to get the list of
P1 and P2 with relative priority for failover and load shar-
ing. The client chooses to connect to P1 and sends the
call invitation. If P1 fails, the client detects this and sends
the message to P2. For stateful services, P1 can exchange
state information with another server, P2, and return the
backup server, P2, to the client in the initial message ex-
change. This way the client knows which backup server
to use in the case of failure. P1 can also give a signed
cookie similar to HTTP cookie to the client, which sends
it to the new failover server, P2, in the initial message
exchange. This is needed for call stateful services such as
conferencing, but not for SIP proxy server failover.

The SIP server, P1, queries the NS to get the list, D1

and D2, for the “database pool”. D1 and D2 are backed
up and replicated by each other, so they can return this
backup server information in the initial message exchange.

The primary limitation is that this requires new pro-
tocol support for name resolution and aggregate server
access in the clients. A translator can be used to in-
teroperate with the clients that do not support reliable
server pooling. However, this makes the translator as a
single point of failure between the client and the server,
hence limiting the reliability. Secondly, the name space
is flat unlike DNS hierarchy, and is designed for a limited
scale (e.g., within an enterprise), but may be combined
with wide area DNS based name resolution, for example.
More work is needed in that context.

3.6 Implementation
We have used some of the above techniques in our
Columbia InterNet Extensible Multimedia Architecture
(CINEMA). The architecture [22, 23] consists of our SIP
server, sipd and a MySQL database for user profile and
system configuration. Other components such as the
PSTN gateway and media servers are outside the scope
of this paper. The configuration and management are
done via a web interface that accesses various CGI (Com-
mon Gateway Interface) scripts written in Tcl on the web
server. All the servers may run on a single machine for
an enterprise setup.

For failover, we use two sets of identical servers on two
different machines as shown in Fig. 9. The database and
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Figure 9: Failover in CINEMA

SIP server share the same host. The databases are repli-
cated using MySQL 4.0 replication [24] such that both
D1 and D2 are master and slave of each other. MySQL
propagates the binary log of the SQL commands of mas-
ter to the slave, and the slave runs these commands again
to do the replication. Our technical report [25] contains
the details of the two-way replication.

MySQL 4.0 does not support any locking protocol be-
tween the master and the slave to guarantee the atomicity
of the distributed updates. However, the updates from
the SIP server are additive, i.e., each registration from
each device is one database record, so having two devices
for the same user register with two database replicas does
not interfere with the other registration. For example, if
bob@home.com registers bob@location1.com with D1 and
bob@location2.com with D2, both, D1 and D2, will prop-
agate the updates to each other such that both D1 and
D2 will have both of Bob’s locations. There is a slight
window of vulnerability when one contact is added from
D1 and the same contact is removed in D2, then after
the propagation of updates the two databases will be in-
consistent with different contacts for the user. It turns
out that this does not occur for the simple failover as we
describe next. We can safely use the two-way replication
as long as updates are done by only the SIP server.

For a simple failover case, the primary server P1 is pre-
ferred over the secondary server P2. So all the REGISTER
requests go to P1 and are updated in D1. The replica-
tion happens from D1 to D2, not the other way. Only in
the case of failure of P1, will the update happen to D2

through P2. But D1 will not be updated by the server in
this case. By making sure that database becomes consis-
tent before the failed server is brought up, we can avoid
the database inconsistency problem mentioned above.

Web scripts are used to manage user profiles and sys-
tem configuration. To maintain database consistency, the
web scripts should not be allowed to modify D2 if D1 is
up. To facilitate this we modified the MySQL-Tcl client
interface to accept a list of connection attributes. For
example, if D1 and D2 are listed then the scripts tries
to connect to D1 first, and if that fails then tries D2 as
shown in Fig. 9. For our web scripts, the short-lived TCP
connection to MySQL is active as long as the CGI script
is running. So the failover at the connection setup is suf-

ficient. In the future, for long-lived connection, it should
be modified to provide failover even when the TCP con-
nection breaks.

3.7 Analysis
The architecture provides high reliability due to redun-
dancy. Assuming the reliability of primary and backup
sets of servers as R, the overall reliability is (1−(1−R)2).

Server failure affects the call setup latency (since the
client retries the call request to the secondary server after
a timeout) and the user availability (the probability that
the user is reachable via the server given that her SIP
phone is up). If the primary server is down for a longer
duration, the DNS records can be updated to change the
secondary server into primary. If the individual server
reliability is R (such that 0 ≤ R ≤ 1), client retry timeout
is TR, and DNS TTL is TD, then the average call setup
latency increases by TR(1 − R)P[TM < TD] (assuming
no network delay and R ≈ 1), where P[tM < TD] is the
probability that the time, tM , to repair the server is less
than the DNS TTL. For example, if the repair time is
exponentially distributed with mean TM , then P[tM <

TD] = 1− e
− TD

TM assuming that the mean time to failure
is much larger than the mean time to repair. (i.e., (1 −
R)TM ≈ 0).

User availability is mostly unaffected by the primary
server failure, because most registrations are REGISTER
refreshes. However, if the primary server fails after the
phone registers a new contact for the first time, but
before the registration is propagated to the secondary
server, then the phone contact location is unreachable
until the next registration refresh. In this case, assum-
ing that the server uptime is exponentially distributed,
and given the memoryless property, the time-to-failure
has the same distribution. Suppose the mean-time-to-
failure is TF and the database replication latency is Td,
then the probability that the server goes down before the
replication is completed (given that it is up at t = 0) is

P[lifetime < Td] = 1 − e
− Td

TF . If this happens, the user
record is unavailable for at most Tr +TR, where Tr is the
registration refresh interval (typically one hour), and TR

is client retry timeout. After this time, the client refreshes
the registration and updates the secondary server making
the user record available.

We use an in-memory cache of user records inside the
SIP server to improve its performance [22, 26]. This
causes more latency in updating the user registration from
P1 to P2. If the failure happens before the update is prop-
agated to the P2, then it may have an old and expired
record. However, in practice the phones refresh registra-
tions much before the expiry and the problem is not vis-
ible. For example, suppose the record expires every two
hours and the refresh happens every 50 minutes. Suppose
P1 receives the registration update from a phone and fails
before propagating the update to D1. At this point, the
record in D2 has 70 minutes to expire so P2 can still han-
dle the calls to this phone. The next refresh happens in



50 minutes, before expiration of the record in D2. If a
new phone is setup (first time registration) just before
failure of P1, it will be unavailable until the next refresh.
Suppose Td and TF are defined as before, and Tc is the
database refresh interval, then the probability that the
server goes down before the replication is completed is

1− e
−Td+Tc

TF .
With the Cisco phone [20] that has the primary and

backup proxy address options (Section 3.1), the phone
registers with both P1 and P2. Both D1 and D2 propagate
the same contact location change to each other. However,
since the contact record is keyed on the user identifier
and contact location, the second write just overrides the
first write without any other side effect. Alternatively,
the server can be modified to perform the immediate syn-
chronization between the in-memory cache and external
database if the server is not loaded.

The two-way replication can be extended to more
servers by using circular replication such as D1-D2-D3-
D1 using the MySQL master/slave configuration [24]. To
provide failover of individual servers (e.g., D1 fails but
not P1), the SIP server P1 should switch to D2 if D1 is
not available.

4 SCALABILITY: LOAD SHARING

In failover, the backup server takes over in the case of fail-
ure whereas in load sharing all the redundant servers are
active and distribute the load among themselves. Some
of the failover techniques can also be extended to load
sharing.

4.1 DNS-based load sharing
The DNS SRV [14] and NAPTR [15] mechanisms can be
used for load sharing using the priority and weight fields
in these resource records [3], as shown below:

example.com

_sip._udp 0 40 a.example.com

0 40 b.example.com

0 20 c.example.com

1 0 backup.somewhere.com

The above DNS SRV entry indicates that the servers
a, b, c should be used if possible (priority 0), with
backup.somewhere.com as the backup server (priority 1)
for failover. Within the three primary servers, a and b are
to receive a combined total of 80% of the requests, while
c, presumably a slower server, should get the remaining
20%. Clients can use weighted randomization to achieve
this distribution.

However, simple random distribution of requests is not
sufficient since the servers need to access the same reg-
istration information. Thus, in the example above, each
server would have to replicate incoming REGISTER re-
quests to all other servers or update the common shared
and replicated database(s). In either case, the updates
triggered by REGISTER quickly become the bottleneck.
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The SIP phones typically do REGISTER refresh once an
hour, thus, for a wireless operator with one million sub-
scribers, it has to process about 280 updates per second.

Fig. 10 shows an example with three redundant servers
and two redundant databases. For every REGISTER, it
performs one read and one write in the database. For every
INVITE-based call request, it performs one read from the
database. Every write should be propagated to all the D
databases, whereas a read can be done from any available
database. Suppose there are N writes and r ∗ N reads,
e.g., if the same number of INVITE and REGISTER are
processed then r = 2. Suppose, the database write takes
T units of time, and database read takes t∗T units. Total
time per database will be ( tr

D
+ 1)TN .

This architecture also provides high reliability due to
redundancy. Assuming that the mean-time-to-repair is
much less than mean-time-to-failure, and the reliabil-
ity of individual proxy server as Rp and database server
as Rd, and suppose there are P proxy servers and D
database servers, the reliability of the system becomes
(1− (1−Rp)

P )(1− (1−Rd)
D). The reliability increases

with increasing D and P .

4.2 Identifier-based load sharing
For identifier-based load sharing (Fig. 11), the user space
is divided into multiple non-overlapping groups. A hash
function maps the destination user identifier to the par-
ticular group that handles the user record, e.g., based on
the first letter of the user identifier. For example, P1

handles a-h, P2 handles i-q and P3 handles r-z. A high
speed first stage server (P0), proxies the call request to
P1, P2 and P3 based on the destination user identifier.
If a call is received for destination bob@home.com it goes
to P1, whereas sam@home.com goes to P3. Each server
has its own database and does not need to interact with
the others. To guarantee almost uniform distribution of
call requests to different servers, a better hashing algo-
rithm such as SHA1 can be used or the groups can be
re-assigned dynamically based on the load.

Suppose N , D, T , t and r are as defined in the previ-
ous section. Since each read and write operation is limited
to one database and assuming uniform distribution of re-
quests to the different servers, total time per database will
be ( tr+1

D
)TN . With increasing D, this scales better than

the previous method. Since the writes do not have to be



propagated to all the databases and the database can be
co-located on the same host with the proxy, it reduces the
internal network traffic.

However, because of lack of redundancy this architec-
ture does not improve system reliability. Assuming that
the mean-time-to-repair is much less than mean-time-to-
failure, and the reliability of the first stage proxy, second
stage proxy and database server as R0, Rp and Rd, and
suppose there are D groups, then the system reliability
becomes R0.(Rp)

D.(Rd)
D. The least reliable component

affects the system reliability the most and the reliability
decreases as D increases.

The only bottleneck may be the first stage proxy. We
observed that the stateful performance is roughly similar
to stateless performance (Section 5), hence a single state-
less load balancing proxy may not work well in practice.

4.3 Network address translation
A network address translator (NAT) device can expose a
unique public address as the server address and distribute
the incoming traffic to one of the several internal private
hosts running the SIP servers [27]. Eventually, the NAT
itself becomes the bottleneck making the architecture in-
efficient. Moreover, the transaction-stateful nature of SIP
servers require that subsequent re-transmissions should be
handled by the same internal server. So the NAT needs
to maintain the transaction state for the duration of the
transaction, further limiting scalability.

4.4 Multiple servers with the same IP
address

In this approach, all the redundant servers in the same
broadcast network (e.g., Ethernet) use the same IP ad-
dress. The router on the subnet is configured to forward
the incoming packets to one of these servers’ MAC ad-
dress. The router can use various algorithms such as
“round robin” or “response time from server” to choose
the least loaded server.

To avoid storing SIP transaction states in the subnet
router, this method is only recommended for stateless SIP
proxies that use only UDP transport and treat each re-
quest as independent without maintaining any transac-
tion state.

In the absence of DNS SRV and NAPTR, we can use
this method for the first stage in Fig. 12. This is less
efficient since the network bandwidth of this subnet may
limit the number of servers in the cluster. Moreover, this
method does not work if the network itself is unreachable.

4.5 Two-stage reliable and scalable ar-
chitecture

Since none of the mechanisms above are sufficiently gen-
eral or infinitely scalable, we propose to combine the two
methods (Fig. 10 and 11) in a two-stage scaling archi-
tecture (Fig. 12) to improve both reliability and scala-
bility. The first set of proxy servers selected via DNS
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Figure 12: Two-stage reliable and scalable architecture

NAPTR and SRV performs request routing to the partic-
ular second-stage cluster based on the hash of the desti-
nation user identifier. The cluster member is again deter-
mined via DNS. The second-stage server performs the ac-
tual request processing. Adding an additional stage does
not affect the audio delay, since the media path (usually
directly between the SIP phones) is independent of the
signaling path. Use of DNS does not require the servers
to be co-located, thus allowing geographic diversity.

Suppose there are S first stage proxy servers, P clusters
in the second stage, and B proxy and database servers in
each cluster. The second stage cluster has one primary
server and B − 1 backups. All the databases in a clus-
ter are replicated using circular replication. Suppose the
REGISTER message arrivals are uniformly distributed (be-
cause of the uniform registration refresh rate by most user
agents) with mean λR and INVITE (or other requests that
need to be proxied such as MESSAGE) arrivals are Pois-
son distributed with mean λP , such that the total request
rate is λ=λR+λP . Suppose the constant service rates of
first stage server be µs, and the second stage server be
µr and µp for registration and proxying, respectively. We
assume a hash function so that each cluster’s arrival rate
is approximately λ

B
. Suppose the reliability (probability

that the system is available for processing an incoming
message) and maintainability (repair rate of the system
after a failure) distributions for first stage proxy are rep-
resented by probability distribution functions (pdf) Rs

and Ms, respectively, and that for second stage proxy be
Rp and Mp respectively. Note that Fig. 9 is a special case
where S=0, P=1 and B=2. Similarly, Fig. 11 is a special
case where S=B=1.

The goal is to quantitatively derive the relationship be-
tween different service parameters (µ), system load (λ),
reliability parameters (R, M) and redundancy parame-
ters (S, B, P ). We want to answer the questions such
as (1) when is first stage proxy needed, and (2) what are
the optimal values for redundancy parameters to achieve
a given scalability and reliability. Our goal is to achieve
carrier grade reliability (99.999% available) and scalabil-
ity (10 million BHCA) using commodity hardware. We
provide our performance measurement results for scala-
bility parameters (S and P ) and system load (λ) in the
next section.

We do not consider the case of load sharing by different



proxies in the same cluster, because load sharing is better
achieved by creating more clusters. For handling sudden
load spikes within one cluster, the DotSlash on-demand
rescue system [28] is more appropriate where a backup
server in the same or another cluster temporarily shares
the load with the primary server of the overloaded cluster.

5 PERFORMANCE EVALUATION

In this section, we quantitatively evaluate the perfor-
mance of our two-stage architecture for scalability using
our SIP registration and proxy server, sipd, and SIPstone
test suite [29].

5.1 Test setup
We performed the SIPstone Proxy 200 tests, over UDP.
The SIPstone test suite has loaders and call handlers, to
generate SIP requests and to respond to incoming re-
quests, respectively. The server under test (SUT) is a
two-stage cluster of our SIP servers, sipd, implementing
the reactive system model [26]. An example test setup
is shown in Fig. 13. Each instance of sipd was run on
a dedicated host with Pentium IV 3GHz CPU, on a
800 MHz motherboard, with 1GB of memory, running
Redhat Linux (Fedora). The hosts communicated over
a lightly loaded 100base-T Ethernet connection. A sin-
gle external MySQL database, running version 3.23.52 of
the MySQL server was shared by all the sipd instances.
But this is not an issue because the Proxy 200 test does
not modify the database, but uses in-memory cache of
sipd [22].
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Figure 13: Example test setup for S3P3

To focus on only the scalability aspects we used one
server in each group of the second stage (Fig. 12, B=1).
We use the convention SnPm to represent n first stage
servers, and m second stage groups with one server per
group. S0P1 is same as a single SIP proxy server without
any first stage load balancer.

On startup, a number of call handlers (in our tests,
four) register a number of destination locations (from non-
overlapping user identifier sets as shown in Fig. 13) with
the proxy server. Then for the Proxy 200 test, a number
of loaders (in our tests, four) send SIP INVITE requests
using Poisson distribution for call generation to the SUT,
randomly selecting from among the registered addresses

180 Ringing

200 OK
200 OK

INVITE

Call handlerLoad generator

H2L1

second stage (stateless)first stage (stateless)

200 OK200 OK
200 OK

BYE
BYE

ACK

BYE

ACKACK

200 OK

180 Ringing

INVITE INVITE

180 Ringing

S1 S2 P1 P2

Figure 14: Example message flow

as shown in Fig. 14. If there is more than one first stage
server (n > 1), then the loader randomly selects one of
the first stage servers. The first stage server proxies the
request on one of the second stage servers based on the
destination user identifier. The second stage server for-
wards each request to the appropriate call handler respon-
sible for this user identifier. The call handler immediately
responds with 180 Ringing and 200 OK messages. These
are forwarded back to the load generators in the reverse
path. Upon receiving the 200 OK response, the load gen-
erator sends an ACK message for the initial transaction
and a BYE request for a new transaction. The BYE is
similarly forwarded to the call handler via the two-stage
servers to reflect the record-route behavior in real oper-
ational conditions [29]. The call handler again responds
with 200 OK. If the 200 OK response is not received by
the loader within two seconds, or if any other behavior
occurs, then the test is considered a failure. The loader
generates the request for one minute for a given request
rate. The server is then restarted, and the test is repeated
for a higher request rate. We used an increment of 100
calls per second (CPS).

This process is repeated until 50% or more of the tests
fail. Although [29] requires 95% success, we measure until
50% to show that the throughput is stable at higher loads.
There is no retransmission on failure [29]. The complete
process is repeated for different values of n and m in the
cluster configuration, SnPm.

5.2 Analysis
Fig. 15 compares the performance of the different SnPm

configurations. It shows the average of three experiments
for each configuration at various call rates. A single sipd
server handles about 900 calls/second (CPS) (see S0P1

in Fig. 15), which corresponds to about three million
BHCA. When the load is more than the server capac-
ity, the throughput remains almost constant at about 900
CPS. When the server is overloaded, the CPU utilization
is close to 100%. Introducing an extra server in the sec-
ond stage and having a first stage load balancing proxy
puts the bottleneck on the first stage server which has a
capacity of about 1050 CPS (S1P2 in Fig. 15). An addi-
tional server in the first stage (S2P2) gives the through-
put of approximately double the single second stage server
capacity. Similarly, S3P3 has capacity of approximately
2800 CPS which is about three times the capacity of the



single second stage server, and S2P3 has capacity of 2100
CPS which is double the capacity of the single first-stage
server.
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Figure 15: Server throughput in SnPm configuration (n
first stage and m second stage servers)
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Figure 16: Theoretical and experimental capacity for con-
figuration SnPm

The results show that we can achieve linear scaling by
putting more servers in the first and second stages in our
architecture. Below, we present the theoretical analysis
for the two-stage architecture.

Suppose the first and second stage servers in SnPm

have capacity of Cs and Cp, respectively (usually, Cs ≥
Cp). The servers are denoted as Si and Pj , 1 ≤ i ≤ n,
1 ≤ j ≤ m, for the first and second stage, respectively.
Suppose the incoming calls arrive at an average rate λ,
with exponential inter-arrival time. Suppose the load is
uniformly distributed among all the n first stage servers,
so the each first stage server gets a request rate of λ

n
.

Suppose the hash function distributes the requests to the
second stage server such that the ith server, Pi, gets a
fraction, fi, of the calls (Note that

∑
fi = 1). Assuming

that all the users are equally likely to get called, and the

hash function uniformly distributes the user identifiers
among the second stage servers, then all fi will be same
(i.e., fi = 1

n
). However, differences in the number of

incoming calls for different users will cause non-uniform
distribution in reality.

The throughput, τ , at a given load, λ, is the combined
throughput of the two stages. The throughput of the first
stage is λ′ = min(λ, nCs), which is load (input) to the
second stage. The server, Pj , in the second stage has
throughput of min(λ′fj , Cp). Thus,

τ (λ) =

m∑

j=1

min(fj min(λ, nCs), Cp)

Without loss of generality, we assume that fi ≥ fj for
i > j. The resulting throughput vs load graph is given by
m + 1 line segments, Li: (λi, τi) → (λi+1, τi+1), for i=0
to m, where (λk, τk) is given as follows:

(0, 0) for k = 0

(
Cp

fk
, τk−1 + (λk − λk−1)Fk) for 1 ≤ k ≤ m and fk ≥ Cp

nCs

(nCs, τk−1 + (λk − λk−1)Fk) for 1 ≤ k ≤ m and fk <
Cp

nCs

(∞, τm) for k = m + 1
where Fk = (1−∑m

i=k
fi)

The initial line segment represents 100% success rate
with slope 1. At the request load of

Cp

f1
, server P1

reaches its capacity and drops any additional request
load. So the capacity increases at rate equal to the re-
maining fraction of requests that go to the other non-
overloaded servers, Pk, k = 2, 3, ..., m. This gives the
slope F1 = (1 − (f2 + f3 + ... + fm)) for the second line

segment. Similarly, P2 reaches its capacity at load
Cp

f2
,

and so on. When all the second stage servers are over-
loaded the throughput remains constant, giving the last
line segment. At the request load of nCs, all the first
stage servers, Si, reach their capacity limit. If the second
stage server Pj ’s capacity, Cp is more than the load it re-
ceives at that time, fj(nCs), then the system throughput
is not limited by Pj .

We used a set of hundred user identifiers for test. The
hash function we used distributed these identifiers as fol-
lows: for m = 2, f is roughly {0.6, 0.4}, and for m = 3, f
is roughly {0.4, 0.3, 0.3}. Note that with 1000 or 10000
user identifiers the same hash fuction distributed the set
more uniformly as expected, but our skewed distribution
of hundred identifiers helps us verify the results assum-
ing non-uniform call distribution for different users. The
capacity Cs and Cp are 900 CPS and 1050 CPS, respec-
tively. The resulting theoretical performance is shown in
Fig. 16 for s1p2, s2p2, s2p3 and s3p3 with system capac-
ity of 1050, 1740, 2100 and 2700 CPS, respectively. Al-
though S2P2’s second stage can handle 900x2=1800 CPS,
the throughput of the first stage is only 1050x2=2100, out
of which 60% (i.e., 1260 CPS) goes to P1 which drops
1260-900=360 CPS. So the system throughput is 2100-
360=1740 CPS. Our experimental results are plotted as
data points (not average, but individual throughput val-
ues) in the same graph for comparison.



5.3 Non-uniform call distribution
If the call requests to the user population among the dif-
ferent second stage servers is non-uniformly distributed,
then the system starts dropping the call requests at a
load lower than the combined capacity of the second stage
servers. To prevent this, the user data should be redis-
tributed among the second stage servers to provide an
uniform distribution on an average, e.g., by changing the
hash function. Fig. 17 compares the two experiments for
the S2P2 configuration: one with the earlier skewed hash
function that distributed the user identifiers in ratio 60:40
and another hash function (Bernstein’s hash [30]), that
distributed the user identifiers in ratio 50:50.
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Figure 17: Effect of user identifier distribution among
second stage servers for S2P2

If the number of second-stage groups changes fre-
quently, then a consistent hashing function [31] is desir-
able that avoid large redistribution of the user identifiers
among the servers.

5.4 Stateful proxy
So far we have shown the test results using the stateless
proxy mode. A SIP request over UDP that needs to be
proxied to only one destination (i.e., no request forking),
can be proxied statelessly. Our SIP server, sipd, can be
configured to try the stateless mode, if possible, for every
request that needs to be proxied. If a request can not
be proxied statelessly, sipd falls back to the transaction
stateful mode for that request. Stateful mode requires
more processing and state in the server, e.g., for matching
the responses against the request.

We ran one experiment by disabling the stateless proxy
mode in the second stage. Fig. 18 shows the experimen-
tal results along with the theoretical throughput using the
earlier hash function. The first and second stage server ca-
pacities are C=800 and C′=650 CPS, respectively. The
first stage server capacity is less if the second stage is
stateful (800 CPS) compared to the case when the second
stage is stateless (1050 CPS), because the stateful second
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Figure 18: Performance of SnPm with stateful proxy in
second stage

stage server generates two additional 100 Trying SIP re-
sponses for INVITE and BYE in a call that increases the
number of messages handled by the first stage server (See
Fig. 19 and 14). If a fraction, fs, of the input load needs to
be handled using stateful mode (e.g., due to request fork-
ing to multiple callee devices), then the effective server
capacity becomes (1− fs)C + fsC

′.
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Figure 19: Stateful proxy message flow

Our more recent optimizations enhances the single sec-
ond stage server throughput to 1200 CPS and 1600 CPS
for stateful and stateless proxy, respectively.

5.5 Effect of DNS
In our earlier experiments, the call handler registered the
DNS host name with the proxy server so that the server
does DNS lookup for locating the call handler host. We
observed comparatively poor performance, e.g., a single
proxy server capacity with DNS was 110 CPS on the same
hardware, compared to 900 CPS without DNS. There
were two problems in our implementation: (1) it used
a blocking DNS resolver that waits for the query to com-
plete so the internal request queue builds up if the DNS
latency is more than the average interarrival duration;
and (2) it did not implement any host-cache for DNS, so
the second stage server did DNS lookup for every call re-
quest. We also observed some fluctuations in throughput
even before the server reached its capacity. This was due



to the fact that the DNS server was not in the same net-
work, and the DNS procedure took between 10 to 25ms
for each call. In our tests, sipd sent about 29 DNS queries
for each call due to multiple resolver search domains (six
in our tests) and DNS records (e.g., sipd tries NAPTR,
SRV and A records, falling back in that order) used in the
implementation.

Then, we implemented a simple DNS host-cache in sipd
and observed same performance as that without DNS
(i.e., 900 CPS for single second stage server). In prac-
tice, the first-stage servers access records for the second-
stage servers within the same domain, thus, doing local-
ized DNS queries in the domain. It will be interesting
to measure the host-cache performance for the real callee
host names by the second-stage servers, instead of a few
call handler host names that were cached after the first
lookups until the end of the test run in our tests. We
plan to use an event-based DNS resolver to improve the
performance and eliminate the potential bottleneck due
to DNS access.

5.6 Other SIPstone tests
We also performed one experiment with Registration test
without authentication. The performance in Fig. 20 along
with the expected throughput values. We used capac-
ity values as Cs=2500 registrations/second (RPS) and
Cp=2400 RPS for first and second stage servers respec-
tively. Authentication requires two transactions, thus re-
ducing the capacity to half. Thus, the S3P3 configuration
will be able to support more than 10 million subscribers
assuming one hour registration refresh interval.
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Figure 20: Performance for SnPm with registration server
in second stage

Note that the second stage registrar is always state-
ful. Moreover, we used the database refresh rate to be
more than the test duration, thus, removing the database
synchronization variable from the results. The first stage
proxy server capacity for the registration test is more be-
cause the number of messages per transaction that it han-
dles is two in the registration test compared to six in the

Proxy 200 test (see Fig. 21 and 14).
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Load generator

200 OK 200 OK

first stage (stateless)
REGISTER REGISTER

second stage: registra
S2 P2

Figure 21: REGISTER message flow

The Proxy 200 test determines the BHCA (busy hour
call attempts) metric, whereas the registration test deter-
mines the number of registered subscribers for the system.

6 CONCLUSIONS AND FUTURE
WORK

We have shown how to apply some of the existing failover
and load sharing techniques to SIP servers, and propose
an identifier-based two-stage load sharing method. Us-
ing DNS is the preferred way to offer redundancy since it
does not require network co-location of the servers. For
example, one can place SIP servers on different networks.
With IP address takeover and NATs, that is rather diffi-
cult. This is less important for enterprise environments,
but interesting for voice service providers such as Von-
age. DNS itself is replicated, so a single name server out-
age does not affect operation. We combine DNS, server
redundancy and the identifier-based load sharing in our
two-stage reliable and scalable server architecture that
can theoretically scale to any capacity. A large user pop-
ulation is divided among independent second stage servers
such that each server load remains below its capacity.

We have also described the failover implementation
and performance evaluation of our two-stage architec-
ture for scalability using the SIPstone test suite in our
test bed. Our results verify the theoretical improvement
of load sharing for call handling and registration capac-
ity. We achieve carrier grade scalability using commodity
hardware, e.g., 2800 calls/second supported by our S3P3

load sharing configuration roughly translates to 10 mil-
lion call arrivals per hour, using six servers (Lucent’s 5E-
XCTM switch, a high-end 5ESS, can support four million
BHCA for PSTN). We also achieved the 5-nines relia-
bility goal even if each server has only uptime of 99%
(3 days/year downtime) using the two-stage architecture.
Other call stateful services such as voicemail, conferenc-
ing and PSTN interworking need more work to do failover
and load sharing in the middle of the call without break-
ing the session.

Detection and recovery of wide area path outages [32]
is complementary to the individual server failover. In-
stead of statically configuring the redundant servers, it
will be useful if the servers can automatically discover
and configure other available servers on the Internet, e.g.,
to handle temporary overload [28]. This gives rise to the
service model where the provider can sell its SIP services
dynamically by becoming part of another customer SIP



network. A peer-to-peer approach for the SIP service also
seems promising for scalability and robustness [33].
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