
Failover and Load Sharing in SIP Telephony

Kundan Singh and Henning Schulzrinne
Department of Computer Science, Columbia University

{kns10,hgs}@cs.columbia.edu

Abstract

We apply some of the existing web server redundancy techniques for high service availability and
scalability to the relatively new IP telephony context. The paper compares various failover and load
sharing methods for registration and call routing servers based on the Session Initiation Protocol (SIP).
In particular, we consider the SIP server failover techniques based on the clients, DNS (Domain Name
Service), database replication and IP address takeover, and the load sharing techniques using DNS, SIP
identifiers, network address translators and servers with same IP addresses. Additionally, we present an
overview of the failover mechanism we implemented in our test-bed using our SIP proxy and registration
server and the open source MySQL database.

Keywords: Availability; scalability; failover; load sharing; SIP

Contents

1 Introduction 2

2 Related Work 3

3 High Availability: Failover 4
3.1 Client-based failover . 4
3.2 DNS-based failover . 4
3.3 Failover based on database replication . 5
3.4 Failover using IP address takeover . 5
3.5 Reliable server pooling . 6

4 Scalability: Load sharing 8
4.1 DNS-based load sharing . 8
4.2 Identifier-based load sharing . 9
4.3 Network address translation . 9
4.4 Servers with the same IP address . 9

5 Implementation 11

6 Conclusions and Future Work 13

7 Acknowledgment 14

A Two-way replication in MySQL 15

1

1 Introduction

The Session Initiation Protocol (SIP) [1] is a distributed signaling protocol for IP telephony. The SIP-
based telephony services have been proposed as an alternative to the classical PSTN (public switched tele-
phone network) and offers a number of advantages over the PSTN [2]. Traditionally, telephony service is
perceived as more reliable than the Internet-based services such as web and email. To ensure wide acceptance
of SIP among carriers, the SIP servers should demonstrate similar quantifiable guarantees on service avail-
ability and scalability. For example, PSTN switches have a “5 nines” reliability requirement, i.e., available
for 99.999% time, which implies at most 5 minutes outage a year.

The SIP proxy servers are more light-weight compared to PSTN switches because they only route call
signaling messages without maintaining any per-call state. The SIP proxy server of a domain is responsible
for forwarding the incoming requests destined for the logical address of the form user@domain to the current
transport address of the device used by this logical entity, and forwarding the responses back to the request
sender. Consider the example shown in Fig. 1. When a user, Bob, starts his SIP phone, it registers his unique
identifier bob@home.com to the SIP server in the home.com domain. The server maintains the mapping
between his identifier and his phone’s IP address. When another user, Alice, calls sip:bob@home.com), her
phone does a DNS (Domain Name Service) lookup for the SIP service record of home.com and sends the SIP
call initiation message to the resolved server IP address. The server “proxies” the call to Bob’s currently
registered phone. Once Bob picks up the handset, the audio packets can be sent directly between the two
phones without going through the server. Further details [2, 3] of the call are skipped for brevity.

Server ClientClient

Alice

(2) DNS

(3) INVITE

Proxy/
registrar

database

(1) REGISTER

(4) INVITE

Bob

DNS DB

Figure 1: An example SIP call

If the server fails due to some reason, the call initiation or termination messages cannot be proxied
correctly. We can improve the service availability by adding a second server that automatically takes over
in case of the failure of the first server. Secondly, if there are thousands of registered users and the single
server cannot handle the load, then a second server can work along with the first server such that the load
is divided between the two. We describe some of these failover and load sharing techniques for SIP servers.
These techniques also apply beyond telephony, for example, for SIP-based instant messaging and presence
that use the same SIP servers for registration and message routing.

2

2 Related Work

Failover and load sharing for web servers is a well studied problem [4, 5, 6, 7]. TCP connection migra-
tion [8], IP address takeover [9] and MAC address takeover [10] have been proposed for high availability. Load
sharing via connection dispatcher [11] and HTTP content or session-based request redirection [12, 13, 10]
are available for web servers. Some of these techniques such as DNS-based load sharing [14, 15] also apply
to other Internet services like email and SIP. Although SIP is an HTTP like request-response protocol, there
are certain fundamental differences that make the problem slightly different. For example, SIP servers can
use both TCP and UDP transport, the call requests and responses are usually not bandwidth intensive,
caching of responses is not useful, and data update (REGISTER message) and lookup (INVITE message) ratio
may be comparable unlike common read-dominated database and web applications.

The IETF’s Reliable Server Pooling (Rserpool) working group is developing an architecture for the name
resolution of service and aggregate server access that does not require maintaining hard state in the front
end load distributor [16, 17]. This can also be used for the SIP server pool.

The SIP-based telephony services exhibit three bottlenecks to scalability: signaling, data and gateway.
The signaling part deals with higher request processing rate for the SIP servers. The data part is the real-
time media interaction between the endpoints and the gateway part deals with the optimal placement of
media gateways and switching components [18]. This paper focuses on the signaling part only. SIP allows
redirecting a request to a less loaded server using the 302 response, or transferring an existing call dialog to
a less loaded endpoint or gateway [1, 19]. Sparks [20] proposes signaling the upstream senders to reduce the
request rate when the downstream servers are overloaded. The SIP server can utilize the failover and load
sharing research done in databases. For example, MySQL allows replication and clustering [21, 22].

We describe and compare some of these techniques in the context of SIP. We also present an overview of
our implementation of failover and describe some practical issues.

3

3 High Availability: Failover

High availability is achieved by adding a backup component such as the SIP server or user record database.
Depending on where the failure is detected and who does the failover, there are various design choices: client-
based, DNS-based, database failover and IP takeover.
3.1 Client-based failover

(3) INVITE

Alice

(4) INVITE

(1) REGISTER
P1

P2

(2) REGISTER

Bob

Figure 2: Client-based failover

In the client-based failover (Fig. 2), Bob’s phone knows the IP addresses of the primary and the backup
servers, P1 and P2. It registers with both, so that either server can be used to reach Bob. Similarly, Alice’s
phone also knows about the two servers. It first tries P1, and if that fails it switches to P2.

All failover logic is built into the client. The servers operate independent of each other. This method is
used by the Cisco IP phones [23]. Configuring the phones with the two server addresses works well within a
domain. However, the phone or the server needs to use DNS to locate the backup server when sending the
call invitation to a user in another domain.

3.2 DNS-based failover

(3)

P2

P1

example.com
_sip._udp SRV 0 0 p1.example.com
 SRV 1 0 p2.example.com

(5) INVITE

(4) INVITE
(1) REGISTER

(2) REGISTER

Alice Bob

DNS

Figure 3: DNS SRV-based failover

DNS SRV-based failover is the most clean and hence, preferred way, to failover. In this method, Alice’s
phone can retrieve the DNS SRV [14] record for sip. udp.home.com to get the two server addresses (Fig. 3).
In the example, P1 will be preferred over P2 by assigning a lower numeric priority value to P1.

4

Alternatively, dynamic DNS can be used to update the A-record for home.com from the IP address of P1

to P2, when P1 fails. P2 can periodically monitor P1 and update the record when P1 is dead. Setting a low
time-to-live (TTL) for the A-record bindings can reduce the failover latency due to DNS caching [24].

3.3 Failover based on database replication

Not all the SIP phones are capable of registering with multiple servers. Moreover, to keep the server failover
architecture independent of the client configuration, the client can register with only P1, which can then
propagate the registration to P2. If a database is used to store the user records, then replication can be
used as shown in Fig. 4. Bob’s phone registers with the primary server, P1, which stores the mapping in
the database D1. The secondary server, P2, uses the database D2. Any change in D1 is propagated to D2.
When P1 fails, P2 can take over and use D2 to proxy the call to Bob. There could be small delay before D2

gets the updated record from D1.

(5) INVITE

(6) INVITE

Alice
Slave

Master

(4)

D2
replication

(3)

database

(2)
(1) REGISTER

D1

P1

P2

Bob

Figure 4: Failover based on database replication

3.4 Failover using IP address takeover

If DNS-based failover cannot be used due to some reason (e.g., not implemented in the client), then IP
takeover [9] can also be used (Fig. 5). Both P1 and P2 have identical configuration but run on different hosts
on the same Ethernet. Both servers are configured to use the external master database, D1. The slave D2

is replicated from D1. The clients know the server IP address as P1’s 10.1.1.1 in this example.

P1

P2

10.1.1.1

10.1.1.1
D2

D1

10.1.1.3

10.1.1.4
10.1.1.2

Master

Slave

Figure 5: When the primary server fails

P1

10.1.1.1

P2

10.1.1.2

D1

D2

10.1.1.3

10.1.1.4
Slave

Master

Figure 6: When the master database fails

5

P2 periodically monitors the activity of P1. When P1 fails, P2 takes over the IP address 10.1.1.1. Now,
all requests sent to the server address will be received and processed by P2. When D1 fails, P1 detects and
switches to D2 (Fig. 6). IP takeover is not used by D2 since the the SIP servers can be modified to switchover
when D1 fails. There can be a small failover latency due to the ARP cache.

The architecture is transparent to the rest of the network (clients and DNS) and can be implemented
without external assumptions. However, if the replication is only from the master to the slave, it requires
modification in the SIP server software to first try D1, and if that fails use D2 so that all the updates are
done to the master server. To avoid replicating the database, P1 can propagate the REGISTER message also
to P2.

Alternatively, to avoid the server modification, the server and the associated database can be co-located
on the same host as shown in Fig. 7. If the primary host fails, both P2 and D2 take over. P1 always uses
D1, whereas P2 always uses D2.

D2P1 D1

10.1.1.1 10.1.1.1 10.1.1.2

P2

SlaveMaster

Figure 7: IP takeover: co-located database and proxy server

3.5 Reliable server pooling

In the context of IETF’s Reliable Server Pooling architecture [25], Fig. 8 shows the client phone as the pool
user(PU), P1 and P2 as the pool elements (PE) in the “SIP server pool”, and D1 and D2 as PEs in the
“Database pool”. P1 and P2 register with their home name server, NS2, which supervises them, and informs
the other name servers (NS) about these PEs. Similarly, D1 and D2 also register with the NS. The SIP
servers are the pool users of the “Database pool”. A pool element is removed from the pool, if it is out of
service.

When the client wants to contact the “SIP server pool”, it queries one of the name servers, NS1, to
get the list of P1 and P2 with relative priority for failover and load sharing. The client chooses to connect
to P1 and sends the call invitation. If P1 fails, the client detects this and sends the message to P2. For
stateful services, P1 can exchange state information with another server, P2, and return the backup server,
P2, to the client in the initial message exchange. This way the client knows which backup server to use in
the case of failure. P1 can also give a signed cookie similar to HTTP cookie to the client, which sends it to
the new failover server, P2, in the initial message exchange. This is needed for call stateful services such as
conferencing, but not for SIP proxy server failover.

The SIP server, P1, queries the NS to get the list, D1 and D2, for the “Database pool”. D1 and D2

are backed up and replicated by each other, so they can return this backup server information in the initial
message exchange.

The primary limitation is that this requires new protocol support for name resolution and aggregate
server access in the clients. A translator can be used to interoperate with the clients that do not support
reliable server pooling. However, this makes the translator as a single point of failure between the client
and the server, hence limiting the reliability. Secondly, the name space is flat unlike DNS heirarchy, and is
designed for a limited scale (e.g., within an enterprise), but may be combined with wide area DNS based
name resolution. More work is needed in that context.

6

SIP server pool

Database pool

Name Servers

name resolution register server
in the pool

register

access server pool

access server poo

Client (PU)

Pool elements

Pool elements

P1 P2

NS1 NS2 DB2DB1

Figure 8: Reliable server pooling for SIP

7

4 Scalability: Load sharing

In failover, the backup server takes over in case of failure whereas in load sharing all the redundant servers
are active and distribute the load among themselves. Some of the failover techniques can also be extended
to load sharing.
4.1 DNS-based load sharing

The DNS SRV [14] and NAPTR [15] mechanisms can be used for load sharing using the priority and weight
fields.

example.com

_sip._udp 0 40 a.example.com

0 40 b.example.com

0 20 c.example.com

1 0 backup.somewhere.com

The above DNS entry indicates that the servers a, b, c should be used if possible (priority 0), with
backup.somewhere.com as the backup server (priority 1) for failover. Within the three primary servers,
a and b are to receive a combined total of 80% of the requests, while c, presumably a slower server, should
get the remaining 20%. Clients can use weighted randomization to achieve this distribution.

write

D=2

D1

P1

P2

P3

D2

Figure 9: DNS-based

P1

a−h

i−q

D=3

r−z
P3

P2

stateless
proxy

D3

P0

D1

D2

Figure 10: Identifier-based load sharing

However, simple random distribution of requests is not sufficient since the servers need to access to the
same registration information. Thus, in the example above, each server would have to replicate incoming
REGISTER requests to all other servers or update the common shared/replicated database(s). In either case,
the updates triggered by REGISTER quickly become the bottleneck. The SIP phones typically do REGISTER
refresh once an hour, thus, for a wireless operator with one million phones, it has to process about 280
updates per second. Our SIP server handles about 300 registration requests per second and about 90 proxy
requests per second [26] on a dedicated Sun Netra XI, a 500 MHz UltraSPARC IIe with 128 MB of memory,
running Solaris 2.9

Fig. 9 shows an example with three redundant servers and two redundant databases. For every REGISTER,
it performs one read and one write in the database. For every INVITE-based call request, it performs one
read from the database. Every write should be propagated to all the D databases, whereas read can be done
from any available database. Suppose there are N writes and r ∗ N reads, e.g., if same number of INVITE
and REGISTER are processed then r = 2. Suppose, the database write takes T units of time, and database
read takes t ∗ T units, where typically t = 1/2. Total time per database will be ((tr/D) + 1)TN .

8

4.2 Identifier-based load sharing

In this method (Fig. 10), the user space is divided into multiple non-overlapping groups, e.g., based on the
first letter of the user identifier. For example, P1 handles a-h, P2 handles i-q and P3 handles r-z. A high
speed stateless server (P0), proxies the call request to P1, P2 and P3 based on the identifier. If a call is
received for destination bob@home.com it goes to P1, whereas sam@home.com goes to P3. Each server has
its own database and does not need to interact with the others.

The only bottleneck may be the stateless proxy. However, since stateless proxies are much faster than
stateful proxies, the method works reasonably well. Moreover, the layer-2 approach for load sharing among
stateless proxies can be used as described in Section 4.4.

Suppose N , D, T , t and r are as defined in the previous section. Since each read and write operation
is limited to one database and assuming uniform distribution of requests to the different servers, total time
per database will be ((tr + 1)/D)TN . Since the writes do not have to be propagated to all the databases
and the database can be co-located on the same host with the proxy, it reduces the internal network traffic.

a1.example.com, a2.example.com

s3.example.com

s2.example.com

s1.example.com

_sip._udp SRV 0 0 b1.example.com

a*@example.com

b*@example.com

b1.example.com, b2.example.com

b.example.com

sip:bob@example.com sip:bob@b.example.com

 SRV 1 0 b2.example.com

 SRV 0 0 s3.example.com
 SRV 0 0 s2.example.com
_sip._udp SRV 0 0 s1.example.com

 SRV 1 0 a2.example.com
_sip._udp SRV 0 0 a1.example.com
a.example.com

Figure 11: SIP scalability using DNS SRV

We can combine the two methods in a two-stage scaling architecture, shown in Fig. 11. The first set of
proxy servers selected via DNS SRV perform stateless request routing to the particular second-stage cluster
based on the identifier. The cluster member is again determined via the DNS SRV. The second-stage server
performs the actual request processing. This architecture scales to any desired processing load and user
population size. Adding an additional stage does not affect the audio delay, since the media path (usually
directly between the SIP phones) is independent of the signaling path.

4.3 Network address translation

A network address translator (NAT) device can expose a unique public address as the server address and
distribute the incoming traffic to one of the several internal private hosts running the SIP servers [27]. Soon
the NAT itself becomes the bottleneck making the architecture inefficient. Moreover, the transaction stateful
nature of SIP servers require that subsequent re-transmissions should be handled by the same internal server.
So the NAT needs to maintain the transaction state for the duration of the transaction, further limiting
scalability.

4.4 Servers with the same IP address

In this approach, all the redundant servers in the same broadcast network use the same IP address. The
router on the subnet is configured to forward the incoming packets to one of these servers’ MAC address.

9

The router can use various algorithms such as “round robin” or “response time from server” to determine
the less loaded server to choose.

To avoid storing SIP transaction states in the subnet router, this method is only recommended for stateless
SIP proxies that use only UDP transport and treat each request as independent without maintaining any
transaction state.

In the absence of DNS SRV, we can use this method for the first stage in Fig. 11. This is less efficient
since the network bandwidth of this subnet may limit the number of servers in the cluster. Moreover, this
method does not work if the network is dead.

10

5 Implementation

We have used some of the above techniques in our Columbia InterNet Extensible Multimedia Architecture
(CINEMA). The architecture [28, 29] consists of our SIP server, sipd and a MySQL database for user profile
and system configuration. Other components such as the PSTN gateway and media servers are outside the
scope of this paper. The configuration and management are done via a web interface that accesses various
CGI (Common Gateway Interface) scripts written in Tcl on the web server. All the servers may run on a
single machine for an enterprise setup.

SRV 0 0 5060 phone.cs
SRV 1 0 5060 sip2.cs

D1

_sip._udp

P1 P2

D2
Web
scripts

phone.cs.columbia.edu sip2.cs.columbia.edu

REGISTER proxy1=phone.cs

backup=sip2.cs

Master Slave

Web
scripts

Figure 12: Failover in CINEMA

For failover, we use two sets of identical servers on two different machines as shown in Fig. 12. The
database and SIP server share the same host. The databases are replicated using MySQL 4.0 replication [21]
such that both D1 and D2 are master and slave of each other. MySQL propagates the binary log of the
SQL commands of master to the slave, and the slave runs these commands again to do the replication.
Appendix A contains the details of two-way replication in MySQL.

MySQL 4.0 does not support any locking protocol between the master and the slave to guarantee the
atomicity of the distributed updates. However, the updates from the SIP server are additive, i.e., each
registration from each device is one database record, so having two devices for the same user register with
two database replicas does not interfere with the other registration. For example, if bob@home.com registers
bob@location1.com with D1 and bob@location2.com with D2, both, D1 and D2, will propagate the updates
to each other such that both will have both of Bob’s locations. There is a slight window of vulnerability
when one contact is added from D1 and the same contact is removed in D2, then after the propagation of
updates the two databases will be inconsistent with different contacts for the user. It turns out that this
does not occur for the simple failover as we describe next. We can safely use the two-way replication as long
as updates are done by only the SIP server.

11

For a simple failover case, the primary server P1 is preferred over the secondary server P2. So all the
REGISTER requests go to P1 and are updated in D1. The replication happens from D1 to D2, not the
other way. Only in the case of failure of P1, will the update happen to D2 through P2. But D1 will not be
updated by the server in this case. By making sure that database becomes consistent before the failed server
is brought up, we can avoid the database inconsistency problem mentioned above.

Web scripts are used to manage user profile and system configuration. To maintain database consistency,
the web scripts should not be allowed to modify D2 if D1 is up. To facilitate this we modified the MySQL-Tcl
client interface to accept a list of connection attributes. For example, if D1 and D2 are listed then the scripts
tries to connect to D1 first, and if that fails then tries D2 as shown in Fig. 12. For our web scripts, the
short lived TCP connection to MySQL is active as long as the CGI script is running. So the failover at the
connection setup is sufficient. In future, for long lived connection it should be modified to provide failover
even when the connection breaks.

We use an in-memory cache of user records inside the SIP server to improve its performance [28, 26].
This causes more latency in updating the user registration from P1 to P2. If the failover happens before the
update is propogated to the P2, then it may have an old and expired record. However, in practice the phones
refresh registrations much before the expiry and the problem is not visible. For example, suppose the record
expires every two hours and the refresh happens every 50 minutes. Suppose P1 receives the registration
update from a phone and fails before propagating the update to D1. At this point, the record in D2 has 70
minutes to expire so P2 can still handle the calls to this phone. The next refresh happens in 50 minutes,
before expiration of the record in D2. If a new phone is setup (first time registration) just before failure of
P1, it will be unavailable until the next refresh. Secondly, with the Cisco phone [23] that has the primary and
backup proxy address options (Section 3.1), the phone sends registers with both P1 and P2. Both D1 and
D2 propagate the same contact location change to each other. However, since the contact record is keyed
on the user identifier and contact location, the second write just overrides the first write without any other
side effect. Alternatively, the server can be modified to perform the immediate synchronization between the
in-memory cache and external database if the current load is less.

The two-way replication can be extended to more servers by using circular replication such as D1-D2-
D3-D1 using the MySQL master/slave configuration [21]. To provide failover of individual servers (e.g., D1

fails but not P1), the SIP server P1 should switch to D2, if D1 is not available.

12

6 Conclusions and Future Work

We have shown how to apply some of the existing failover and load sharing techniques to SIP servers.
The DNS SRV is the most preferred way to do redundancy since it does not require network co-location of
the servers. For example, one can place SIP servers on different networks. With IP address takeover and
NATs, that is rather difficult. This is less important for enterprise environments, but interesting for voice
service providers such as Vonage. DNS itself is replicated, so a single name server outage does not affect
operation. Combining DNS with the identifier-based load sharing can scale to large user base.

We have also described the failover implementation in our test bed. We will continue implementing and
experimenting with load sharing techniques for our SIP server. Other call stateful services such as voicemail,
conferencing and PSTN interworking need more work to do failover and load sharing in the middle of the
call without breaking the session.

Detection and recovery of wide area path outages [30] is complementary to the individual server failover.
Instead of statically configuring the redundant servers, it will be useful if the servers can automatically
discover and configure other available servers on the Internet, e.g., to handle temporary overload [31]. This
gives rise to the service model where the provider can sell its SIP services dynamically by becoming part of
another customer SIP network. A peer-to-peer approach for the SIP service also seems promising for future
work.

13

7 Acknowledgment

Jonathan Lennox is the primary architect of our SIP server, sipd. Sankaran Narayanan implemented
efficient database interaction in sipd. The work is supported by a grant from SIPquest, Inc.

14

A Two-way replication in MySQL

This section describes the steps needed to setup two-way replication in MySQL. Please refer to Fig. 12
for the following steps:

1. Edit /etc/my.cnf to set the unique server-id for D1 and enable binary logging:

[mysqld]

server-id = 1

log-bin

Restart mysqld.

2. Create a replication user on D1 with appropriate privileges for D2’s IP address.

GRANT SELECT,PROCESS,FILE,SUPER,RELOAD,

REPLICATION CLIENT,REPLICATION SERVER ON

. TO replication@"sip2.cs.columbia.edu"

IDENTIFIED BY "somepassword";

3. Then copy the data/sip directory to snapshot.tar file

4. Get the master status (file name and position) of the binary log.

SHOW MASTER STATUS;

Suppose it shows file as phone-bin.001 and position as 73.

5. Shutdown mysqld and start it again. Make sure no updates are happening in D1 or D2 while setting
up the replication. Make sure D2 is dead.

6. Create a replication user on D2 similar to D1, but with permissions for IP address of D1, so that D1

can access D2.

7. Copy and uncompress the snapshot.tar from D1 to the D2 data directory. This will ensure the content
the sip database of D2 is same as that of D1 when for the given master status of D1. Some fields in
the sip database, such as cinema::sipdhost should store the actual host name of the machine running
the server. These fields can be populated with sip2 for D2 using the SQL SLAVE SKIP COUNTER
global in MySQL.

8. Edit /etc/my.cnf of D2, similar to D1, except that the server-id is 2 for D2. (server-id values are not
important as long as they are unique for a given replication setup.)

9. Start mysqld on D2.

10. Setup D2 as slave of D1, by running following command on D2:

CHANGE MASTER TO

MASTER_HOST=’sip2.cs.columbia.edu’,

MASTER_USER=’replication’,

MASTER_PASSWORD=’somepassword’,

MASTER_LOG_FILE=’phone-bin.001’,

MASTER_LOG_POS=73;

START SLAVE;

The log file and position are same as that recorded from D1. At this point we have D1 to D2 replication
complete.

15

11. Now record the master status on D2. Suppose it shows file as sip2-bin.002 and position as 79.

12. Copy all the *bin.* (binary logs) from D2’s data directory to D1’s data directory.

13. Not set D1 as slave of D2 by running following command on D1:

CHANGE MASTER TO

MASTER_HOST=’phone.cs.columbia.edu’,

MASTER_USER=’replication’,

MASTER_PASSWORD=’somepassword’,

MASTER_LOG_FILE=’sip2-bin.002’,

MASTER_LOG_POS=79;

START SLAVE;

At this point D2 to D1 replication is also complete. To allow access from other hosts, it may be required
to remove the no-authentication line from the MySQL permissions table.

USE mysql;

DELETE FROM user WHERE User=’’;

FLUSH PRIVILEGES;

To bring up D1 after a failover, tables on D2 should be read-locked to prevent database inconsistency.
In case failover messes up for some reason, the whole procedure can be repeated to setup the failover from
scratch without losing the data in D1.

16

References

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. R. Johnston, J. Peterson, R. Sparks, M. Handley, and
E. Schooler, “SIP: session initiation protocol,” RFC 3261, Internet Engineering Task Force, June 2002.

[2] H. Schulzrinne and J. Rosenberg, “Internet telephony: Architecture and protocols – an IETF perspec-
tive,” Computer Networks and ISDN Systems, vol. 31, pp. 237–255, Feb. 1999.

[3] H. Schulzrinne and J. Rosenberg, “The session initiation protocol: Internet-centric signaling,” IEEE
Communications Magazine, vol. 38, Oct. 2000.

[4] H. Bryhni, E. Klovning, and Øivind Kure, “A comparison of load balancing techniques for scalable web
servers,” IEEE Network, vol. 14, July 2000.

[5] K. Suryanarayanan and K. J. Christensen, “Performance evaluation of new methods of automatic redi-
rection for load balancing of apache servers distributed in the Internet,” in IEEE Conference on Local
Computer Networks, (Tampa, Florida, USA), Nov. 2000.

[6] O. Damani, P. Chung, Y. Huang, C. Kintala, and Y. Wang, “ONE-IP: techniques for hosting a service
on a cluster of machines,” Computer Networks, vol. 29, pp. 1019–1027, Sept. 1997.

[7] D. Oppenheimer, A. Ganapathi, and D. Patterson, “Why do internet services fail, and what can be done
about it?,” in 4th USENIX Symposium on Internet Technologies and Systems (USITS ’03), (Seattle,
WA), Mar. 2003.

[8] A. C. Snoeren, D. G. Andersen, and H. Balakrishnan, “Fine-grained failover using connection migra-
tion,” in USENIX Symposium on Internet Technologies and Systems, (San Francisco), Mar. 2001.

[9] High-Availability Linux Project, http://www.linux-ha.org/.

[10] Cisco Systems, Failover configuration for LocalDirector, http://www.cisco.com/warp/public/cc/pd/cxsr/400/tech/locd

[11] G. Hunt, G. Goldszmidt, R. P. King, and R. Mukherjee, “Network dispatcher: a connection router for
scalable Internet services,” Computer Networks, vol. 30, pp. 347–357, Apr. 1998.

[12] C.-L. Yang and M.-Y. Luo, “Efficient support for content-based routing in web server clusters,” in 2nd
USENIX Symposium on Internet Technologies and Systems, (Boulder, Colorado, USA), Oct 1999.

[13] Akamai Technologies, Inc. http://www.akamai.com.

[14] A. Gulbrandsen, P. Vixie, and L. Esibov, “A DNS RR for specifying the location of services (DNS
SRV),” RFC 2782, Internet Engineering Task Force, Feb. 2000.

[15] M. Mealling and R. W. Daniel, “The naming authority pointer (NAPTR) DNS resource record,” RFC
2915, Internet Engineering Task Force, Sept. 2000.

[16] P. Conrad, “Services provided by reliable server pooling,” Internet Draft draft-ietf-rserpool-service-00,
Internet Engineering Task Force, Jan. 2004. Work in progress.

[17] M. Tuexen, Q. Xie, R. J. Stewart, M. Shore, L. Ong, J. Loughney, and M. Stillman, “Requirements for
reliable server pooling,” RFC 3237, Internet Engineering Task Force, Jan. 2002.

[18] A. Srinivasan, K. G. Ramakrishnan, K. Kumaran, M. Aravamudan, and S. Naqvi, “Optimal design of
signaling networks for Internet telephony,” in Proceedings of the Conference on Computer Communica-
tions (IEEE Infocom), (Tel Aviv, Israel), Mar. 2000.

[19] R. Sparks, “The session initiation protocol (SIP) refer method,” RFC 3515, Internet Engineering Task
Force, Apr. 2003.

[20] R. Sparks, “SIP load management,” Internet Draft draft-sparks-sipping-load-00, Internet Engineering
Task Force, Oct. 2003. Work in progress.

[21] MySQL, Open Source SQL server, http://www.mysql.com.

17

[22] Emic Cluster for MySQL, http://www.emicnetworks.com.

[23] Cisco IP phone 7960, Release 2.1, http://www.cisco.com.

[24] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS performance and the effectiveness of caching,”
in ACM SIGCOMM Internet Measurement Workshop, (San Francisco, California), Nov. 2001.

[25] M. Tuexen, Q. Xie, and M. B. et. al., “Architecture for reliable server pooling,” Internet Draft draft-
ietf-rserpool-arch-07, Internet Engineering Task Force, Oct. 2003. Work in progress.

[26] J. Lennox, “Services for internet telephony,” PhD. thesis, Department of Computer Science, Columbia
University, New York, New York, Jan. 2004. http://www.cs.columbia.edu/~lennox/thesis.pdf.

[27] P. Srisuresh and D. Gan, “Load sharing using IP network address translation (LSNAT),” RFC 2391,
Internet Engineering Task Force, Aug. 1998.

[28] K. Singh, W. Jiang, J. Lennox, S. Narayanan, and H. Schulzrinne, “CINEMA: columbia internet ex-
tensible multimedia architecture,” technical report CUCS-011-02, Department of Computer Science,
Columbia University, New York, New York, May 2002.

[29] W. Jiang, J. Lennox, S. Narayanan, H. Schulzrinne, K. Singh, and X. Wu, “Integrating Internet tele-
phony services,” IEEE Internet Computing, vol. 6, pp. 64–72, May 2002.

[30] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris, “Resilient overlay networks,” in 18th
ACM SOSP, (Banff, Canada), Oct. 2001.

[31] W. Zhao and H. Schulzrinne, “DotSlash: A scalable and efficient rescue system for handling web
hotspots,” technical report CUCS-007-04, Department of Computer Science, Columbia University, New
York, New York, Feb. 2004.

18

