
CINEMA: Columbia InterNet Extensible Multimedia Architecture

Kundan Singh, Wenyu Jiang, Jonathan Lennox, Sankaran Narayanan and Henning Schulzrinne
Department of Computer Science, Columbia University
{kns10,wenyu,lennox,sankaran,hgs}@cs.columbia.edu

Abstract

We describe the architecture and implementation of our Internet telephony system CINEMA
(Columbia InterNet Extensible Multimedia Architecture, intended to replace the departmental
PBX (telephone switch). It interworks with the traditional telephone networks via PSTN/IP
gateways. It also serves as a corporate or campus infrastructure for existing and future services
like web, email, video and streaming media. Initially intended for a few users, it will eventually
replace the plain old telephones from our offices, due to the cost benefits and new services it
offers. We also discuss common inter-operability problems between the PBX and the gateway.
This paper is intended as a design document of the overall system.

keywords: Internet telephony deployment; VoIP test-bed; advanced IP telephony; PSTN/IP
interoperability; SIP

1

Contents

1 Introduction 4

2 Overview of SIP 5

3 Architecture 8
3.1 Components . 8
3.2 User database . 9

4 User Interface 16
4.1 New user . 16
4.2 User login . 16
4.3 Portal mode . 16
4.4 Address book and calendar . 17
4.5 Billing and accounting . 18

5 Call Handling 19
5.1 Canonicalization . 19
5.2 Programmable call handling . 21

5.2.1 CGI: Common Gateway Interface . 21
5.2.2 CPL: Call Processing Language . 21

6 PSTN Inter-operation 24
6.1 PSTN-to-IP call . 24
6.2 IP-to-PSTN call . 25
6.3 Connecting to the PBX . 27

7 Security Issues 30
7.1 PSTN security . 30
7.2 TLS: Transport Layer Security . 32
7.3 Anonymous access . 32
7.4 Other issues . 33

8 Monitoring and Accounting 34
8.1 Logging and accounting . 34

8.1.1 SQL . 34
8.1.2 RADIUS . 34
8.1.3 Billing . 34

8.2 Monitoring with SNMP . 35
8.3 Server monitoring . 36

9 Other Services 38
9.1 Unified messaging . 38
9.2 Multi-party conferencing . 38
9.3 Instant messaging and presence . 39
9.4 Interactive voice response . 39
9.5 IPv6 support . 40

2

10 Implementation 41
10.1 SIP library overview . 43
10.2 SIP transaction and client branches . 43
10.3 Receiving messages . 47
10.4 Incoming registration . 51
10.5 Policy architecture . 52
10.6 Client branch - state machine . 53
10.7 Stateful proxy . 54
10.8 Stateless proxy . 57
10.9 User agent library . 57
10.10Thread synchronization . 59
10.11Database lookup . 61

11 Related Work 63

12 Conclusions and Future Work 64

13 Acknowledgments 65

14 Glossary 66

A Our Installation 71
A.1 System configuration . 71
A.2 Cisco 2600 (gateway) configuration . 73
A.3 PBX configurations . 77

A.3.1 Layer 1: T1 Line cabling . 77
A.3.2 Layer 2: Link Layer configuration . 78

A.4 Database tables . 80
A.5 DNS SRV record . 82

3

1 Introduction

Internet telephony is defined as the transport of telephone calls over the Internet. Internet
telephone calls can originate from traditional phone sets through gateways, PCs using software or
embedded devices (“Ethernet phones”). Most of the interest in Internet telephony is motivated by
cost savings and ease of developing and integrating new services. Internet telephony integrates a
variety of services provided by the current Internet and the Public Switched Telephone Network
(PSTN) infrastructure. Internet telephony employs a variety of protocols, including RTP (Real-time
Transport Protocol [31]) for transport of multimedia data and SIP (Session Initiation Protocol [28,
34]) or H.323 [13] for signaling, i.e., establishing and controlling sessions.

SIP is designed to integrate with other Internet services, such as email, web, voice mail, in-
stant messaging, multi-party conferencing and multimedia collaboration. We have implemented a
SIP-based software suite called Columbia InterNet Extensible Multimedia Architecture (CINEMA) for
Internet telephony and installed it within the Computer Science department at Columbia Univer-
sity, integrating it with the existing PBX infrastructure. The environment provides inter-operability
with the PSTN, programmable Internet telephony services, IP-based voice mail, integration with
web and email for unified messaging, multi-party multimedia conferencing, and inter-operability
with existing multimedia tools. The setup allows us to extend our PBX capacity and eventually
replace it, while keeping our existing phone numbers. The test-bed provides an environment where
we can add new services and features, for example, accessing emails from a regular telephone, net-
work appliance control, and support for instant messaging and presence. We believe that our setup
can be readily used by other organizations.

Section 2 gives an overview of SIP. Section 3 details the architecture of our test-bed describing
various components. Section 4 describes the user interface. Call handling by our SIP server is
described in Section 5. PSTN Inter-operability is described in Section 6, whereas security issues
are discussed in Section 7. Monitoring and accounting for IP telephony is important for billing
purposes, and described in Section 8. Other advanced services are listed in Section 9. We describe
various modules of our implementation in Section 10. Section 11 deals with some related work in
this area. Finally, we summarize and point to future work in Section 12. Details of our installation
are presented in Appendix A.

4

2 Overview of SIP

Before we look at our architecture it is helpful to know how SIP operates1. Readers familiar
with SIP may skip this section.

For an Internet audio call, it is sufficient for a participant to know the audio codecs supported
by the other participant and the IP address and port number to which audio packets should be
sent. The problem with this is that IP addresses are hard to remember and may change if the
user is mobile (terminal and personal mobility). SIP allows use of a more high level address of the
form user@domain for user mobility. For instance, a user can call bob@office.com no matter what
communication device, IP address or phone number he is using currently. The current locations
of the users are maintained by the SIP location or registration servers. The user’s communication
devices register with registrar servers periodically by providing the address at which he/she can be
reached.

(1)
INVITE (2)

Proxy

Registrar

INVITE

REGISTER
(2)

(3)

p42.acme.com

wonderland.com

Internet

acme.com

Figure 1: SIP call flow using proxy servers

Fig. 1 shows the steps involved when Alice, with address sip:alice@wonderland.com calls Bob,
sip:bob@acme.com.

1. When the SIP phones are powered on they register their locations (IP addresses or host name)
with the corresponding server. Thus Bob’s phone tells the server at acme.com that the user
bob is located at host p42.acme.com.

2. Since, the callee sip:bob@acme.com is located on the Internet, Alice’s SIP phone sends the
call to its “outbound” server, a SIP server that handles all calls destined for addresses outside
wonderland.com.

3. The outbound server contacts the server acme.com, which knows Bob’s current locations.

4. The server acme.com can either return Bob’s location (in redirect mode) or can itself try
to contact Bob at his current location (in proxy mode). Fig. 1 shows the proxy mode of
operation. In the former case, the user agent retries the new location, while in the latter case
the request is forwarded.

1More details at http://www.cs.columbia.edu/sip

5

It is possible to encounter multiple SIP servers (either in redirect or proxy mode) in a given call
attempt. A forking proxy can fork the call request to more than one location, so that the first
phone that is picked up gets the call, while all other phones stop ringing. Note that the outbound
server is optional and may not be used in many campus environments or for all outgoing calls.

SIP calls can also use “tel” URLs that identify E.164 telephone numbers [39], for example,
tel:+12125551234.

The list of supported audio and video codecs and the transport addresses to receive media,
described using Session Description Protocol (SDP [11]), carried in SIP requests and responses.

Another point to note is that the media path for audio and video can be different from the
signaling path for SIP because media can be transferred directly between the endpoints using
Real-time Transport Protocol (RTP [31]) over UDP.

Figure 2: Example SIP call routing

Fig. 2 shows a more complex call routing scenario in SIP.

1. Bob (bob@home.com) tries to reach Alice (alice@office.com).

2. The server at office.com redirects Bob indicating that Alice can be reached at alice@school.edu.

3. Bob’s user agent tries the new location.

4. Alice has registered four contacts, with one of them (her desk phone) as her preferred location.
Thus, the server at school.edu tries the more preferred location for Alice at her desk phone.

6

5. The phone is idle, and sends a “ringing” response. However, since it is not picked up, the
server times out.

6. The server then forks the call request to all the remaining three locations simultaneously.
The locations are Alice.Cueba@intern.com, alice@columbia.edu and ac114@hostel.school.com.

7. The phone at intern.com responds back saying that the user is not available.

8. The server at columbia.edu forwards the call to Alice’s desktop computer.

9. A popup window appears on Alice’s machine indicating an incoming call from Bob. She
accepts the call by clicking on the “Accept” button of the user interface.

10. The server at columbia.edu forwards the response to the upstream server at school.edu.

11. The server at school.edu on receiving the successful response, cancels out all the other pending
call requests. In this example it cancels the call request branch sent to hostel.school.com. The
phone at hostel.school.com will stop ringing at this time.

12. The server then forwards the successful response to the upstream host (Bob’s user agent).

13. The call is successful. Now media (audio and/or video) can be exchanged between the two
endpoints.

In the above example we have assumed a wide-area network composed of a variety of envi-
ronments (campus/corporate/enterprise) running SIP servers. The rest of the paper explores the
architecture and components needed for to enable Internet telephony services in such environments.

7

3 Architecture

3.1 Components

The Columbia InterNet Extensible Multimedia Architecture (CINEMA) consists of a set of SIP-
based servers that provide a pathway to a post-PBX era of communications. It provides a com-
prehensive environment for creating and deploying rich Internet multimedia services including pro-
grammable Internet telephony services, audio/video conferencing, IP-based voice mail, and unified
messaging. Fig. 3 shows the architecture and the interaction among the components of our test
bed.

Figure 3: Architecture

SIP server: sipd is a SIP proxy, redirect and registration server. It receives user location infor-
mation in SIP REGISTER messages from user agents. It also proxies/redirects the incoming
calls for registered users thus acting as a call router.

SQL database: sipd uses the MySQL [20] database for storing the current network addresses and

8

phone numbers where a user can be reached. Other per-user information related to voice mail
and conferences is also stored in the database.

PSTN gateway: A Cisco 2600 router with SIP/PSTN capability is connected to the departmental
telephone switch (PBX) with a T1 trunk and to the department LAN. This could be any SIP-
speaking gateway.

User agents: SIP user agents (SIP UAs) allow users to interact with the system over IP. They
can be either hardware (Ethernet phone) or software based. Our e*phone [14] is an example
of an Ethernet phone, whereas sipc [15] is a software that runs on workstations and PCs. We
also use Ethernet phones from Cisco, Pingtel and 3Com in our test bed.

Media server: rtspd is our general-purpose streaming media server, which we use for the storage
and delivery of announcements and voice mail messages [38].

Unified messaging: sipum is a centralized answering machine and voice mail system [38] that
uses rtspd for storing announcements and messages.

Conference server: sipconf is a centralized audio/video conference server [36].

SIP-H.323 translator: sip323 is a signaling gateway [37] between SIP and H.323. H.323 [13]
is ITU-T’s standard for multimedia conferencing over any packet based network. sip323
integrates popular H.323 clients such as Microsoft NetMeeting into a SIP infrastructure.

3.2 User database

The SIP server and the SQL database form the core of the CINEMA infrastructure, while the other
components can be selectively enabled or disabled. For example, if an installation does not intend
to use NetMeeting, it does not need sip323.

Every user of the system is given a unique identifier of the form user@domain, also called a
canonical user identifier. Although all the local identifiers have the same domain, the domain
portion in the identifier allows for unique identification and authentication. Non-local entries are
also needed for handling conference members. Generally, users are assigned their email addresses
as SIP identifiers. However, our system can also operate in “portal” mode, described in Section 4.3,
where a new identity is created specifically for SIP calls.

User information is stored in the SQL database as the Primary User Table (PUT), indexed
by user identifier. The system distinguishes between regular users and administrators, in terms
of access privileges. Table 1 and 2 describes the PUT fields. Parts of the table deal with unified
messaging, which we describe in Section 9.1.

The database also stores the personal address book information in the person table. This
includes the full name of the user, organization, department, email address, biography and so on.
Every PUT record references an entry in the person table but not every address book entry has a
PUT entry.

Fig. 4 shows the realationship among various user profile tables. Fig. 5 shows interaction among
different conferences and event tables. System configuration tables are shown in Fig. 6. All these
database tables are summarized in tables 4, 5, 6 and 7. Among the important tables, the contacts
table stores the current locations of the registered users (Table 3), which can be updated from
the web page or by the SIP phones using SIP registration. It also contains the expiration time
until which the location information needs to be refreshed, the preference value to sort multiple
registered locations for the same user, and the action parameter to redirect or proxy an incoming
call for this user. The aliases table stores aliases of all users and is used during canonicalization
(see Section 5).

9

Field (type) description
user (string) Canonical user identifier. It could be a user identifier of the form user@domain (e.g.,

hgs@cs.columbia.edu).
hash value
(string)

MD5 hash of “user:realm:password” (the encrypted password).

realm (string) Realm to be used for authentication. This is used as a prompt while challenging the
user for authorization. We use the domain name (e.g., cs.columbia.edu).

sip groups
(string)

List of space-separated group identifiers for defining the different services to be made
available for this user. Possible values are admin, cgi and voicemail. admin has
administrative privileges and can access other users’ accounts. cgi group indicates
that the user can have SIP-CGI [18] scripts. voicemail group indicates that the
user can have a voice-mail box. Since SIP-CGI should be allowed only for trusted
users, it is available only to selected users.

auth (enumera-
tion)

Type of authentication needed. Possible values are: never, requires and request.
never means that the server never asks for authentication. requires indicates that
the server should always ask for authentication and if the authentication fails the
call request should be terminated. request indicates that the server should request
authentication, but should complete the call even if the authentication fails. This
feature can be used to restrict the services offerred to un-authorized users.

algorithm
(string)

Algorithm to be used for authentication. Currently only possible value is MD5.

sip methods
(string)

List of space-separated SIP methods allowed for the user. Possible values are IN-
VITE, REGISTER and any. For example if the user has set this to “INVITE REGIS-
TER” then only these methods will be allowed. All others (e.g., SUBSCRIBE) will
be disallowed.

remote user
(text)

List of remote user identifiers allowed to register for this user. This is needed for
third party registration, where for instance, a secretary wants to register for her
supervisor and receive calls on his behalf.

last modified
(timestamp)

Time when this record was last modified.

gwclass (string) Gateway class the user belongs to for the purpose of making telephone calls via the
gateway. For example we support gateway classes such as faculty, staff, phd and
student, with different privileges for different classes in our setup. Members of the
phd and student are not allowed to make long distance calls whereas faculty and
staff are.

Table 1: Primary User Table (general attributes)

10

Field (type) description
busy (string) RTSP URL for the outgoing message prompt when the user’s phone is busy, e.g.,

rtsp://SERVER/audio/welcome.au. The keyword SERVER is substituted by the
unified messaging system based on the current media server in use.

noresponse
(string)

RTSP URL for the outgoing message prompt when there was no response from the
user’s phone, e.g., rtsp://SERVER/audio/welcome.au. The keyword SERVER is
substituted by the unified messaging system based on the current media server in
use.

message tem-
plate (text)

Message template for the email notification message to be sent when a new message
arrives.

um timeout
(int)

Number of seconds to wait before forwarding the call to the voice mail.

max msgsize kb
(int)

Maximum voice message size in kilobytes. A value of 200 indicates that the system
will allow voice messages of upto maximum 200KB and beyond that the message is
truncated. This is to avoid accidental recording of very large messages.

Table 2: Primary User Table (unified messaging attributes)

Field (type) description
user (text) Canonical user identifier. Same as Primary User Table’s user field.
contact (text) Contact URI for this user. Multiple contacts for the same user are

stored in different records. Both the user and the contact fields to-
gether form the database “key” for this table. This could be any URI,
e.g., “sip:kns10@muni.cs.columbia.edu” or “mailto:kundan@columbia.edu”.
However, our SIP server recognizes only “sip” and “tel” URI’s.

expires (date-
time)

Expiration time for this contact. This is stored in GMT format. Default is
set as always active. This is done by setting the expires to the maximum
possible value of 9999-12-31 23:59:59. After this time the contact location is
expired and removed from the database on next access.

q (float) Preference value for this contact. This is needed when there are multiple con-
tact locations for this user. Possible value ranges from 0.0 (least preferred)
to 1.0 (most preferred).

action (enu-
meration)

Preferred action to be taken by the SIP server for this registered contact.
Possible values are Proxy and Redirect.

last modified
(timestamp)

Time when this record was last modified.

display name
(string)

Optional display name for the contact URI.

sip methods
(string)

List of space-separated SIP methods possible for this contact location. For
example, some contact locations (e.g., “mailto:kns10@columbia.edu”) may
not allow INVITE.

Table 3: Contacts table

11

PUT

contacts

aliases

subscription

address personnote

person

persongroup

groupmember

 user

user

sub_to

owner

person
person

owner

person

persongroup

owner

person
(1:1)

A
R

B
There could but multiple B by a different relation.
Relation R indicates a field name in table A.
Multiple A can map to same B unless noted by 1:1 relation.

For every A there is one unique associated B by relation R.

gwclass

gwclass

Figure 4: User profile tables

12

eventgroup conferences

eventcategory

eventgroup_notify

persongroup

conffiles

eventgroup

user

persongroup

eventgroup

categories

event confinstances

eventattendee eventresource

resource

confservers

event_id

host_instance
(may not be present

in confservers, if server died)

organizer

messageboard

eventgroup

sender
PUT confusersuser

owner
organizer

creator

eventgroup

event_group
 (1:1)

confurl

(1:1)

Figure 5: Conferences and event tables

cinema

sipd_config

vmail

server_name

ssl_config

domain
server_name

server_name
(1:1)

server_name (1:1)

 (1:1)

(1:many)

Figure 6: Configuration tables

13

Table name Description
cinema Global system configuration information, e.g., administrator, web server

host, default realm, portal or local mode.
sipd config System configuration information for SIP proxy/registrar server (sipd), e.g.,

type of authentication, default mode a proxy or redirect, default expiry for
registrations..

domain Acceptable domains for this system. sipd will accept registrations for these
domains. Other domains are considered foreign domain and hence could be
proxied or redirected. In addition, calls whose host part of the URI matches
one of the entries in the domain table, will be handled locally while others
will be proxied to the particular domain’s SIP server.

ssl config TLS [8] configuration for establishing secure connections (described in Sec-
tion 7.2).

vmail System Configuration information for the unified messaging system and me-
dia server.

license Software licensing information for various components.
requestlog Call logging configuration (described in Section 8.1).

Table 4: System configuration tables

Table name Description
put User profile for SIP call routing, e.g., authentication, voicemail. (Table 1

and 2)
aliases User aliases for call routing. These are alternate identifiers for the user.

Canonicalization using aliases is described in Section 5
contacts Contact locations where a user can be reached, e.g., the current SIP URL of

the phone the user is using.
subscription Subscription information maintained by the presence agent (part of sipd).

Presence agent is described in Section 9.3
person User profile information, e.g., name, organization, email, web page address,

etc. Every entry in put has an entry in this table. However, system users
can create multiple person entries in their address book.

personnote Note or comment about persons maintained on a per user basis.
address Mailing addresses and phone numbers for a person.
persongroup Different groups for the purpose of access control.
groupmember Associates a person to a persongroup.

Table 5: User profile and locations

Table name Description
gwclass User classes for different call privileges, e.g., full access, guest access; or

student, faculty and staff in an university environment.
tariff Billing related details for various call prefixes (local, long distance) for vari-

ous user classes (faculty, students, staff). We describe accounting and billing
in Section 8.1.3.

dialplan Dialplan mapping. This is used for canonicalizing telephone numbers to a
globally routable number, described in Section 5.

gateway map Locations of the telephony gateways and permissions for various telephone
number prefixes, described in Section 6.

Table 6: PSTN interworking tables

14

Table name Description
conferences List of all scheduled conferences. A conference is identified using a name,

e.g., sip-forum. This is used by the conferencing server.
eventgroup A group of recurring events. For instance, a weekly seminar or twice a week

class. Every conference belongs to an eventgroup. But an eventgroup may
not have an associated conference.

event An instance of an event, e.g., a seminar, a talk, or a conference instance.
eventattendee Participants in an event.
eventcategory Type of event: meeting, class, etc.
eventgroup
notify

Notification and announcement related subscription for an event or an event-
group. Users can register to get notified about an event.

resource Various resources like room, projector.
eventresource This associates an event with the resources it needs.
confinstances A conference instance is an instantiation of a conference. For example a

conference that regularly repeats every week has one record in confinstances
table every week. The separation of confinstances from conferences allow
storing per instance information, e.g., conference recording. A conference
instance is associated with an event.

confservers Available servers used for conference load balancing. Multiple conference
servers work together to provide high quality conferencing by balancing load
among themselves. A given conference is always hosted by one server. But
a new conference can be redirected to a less loaded server.

confusers Details regarding participants in a conference such as names, media access
privileges etc. For example, a conference can allow all users @cs.columbia.edu
to send and receive audio where as all other users to only receive audio.

messageboard Message board for sharing offline messages in an eventgroup.
conffiles Shared files in an eventgroup for offline viewing.

Table 7: Conferences and events tables

15

4 User Interface

We have implemented a web-based user interface to configure and manage the system. Various
user and system profiles can be configured from a web browser. Both the per-user information and
system configuration tables can be manipulated from the web interface. There are two classes of
users: normal users (referred to as the user class) and administrators (referred to as the adminis-
trator class). Administrators have additional privileges compared to regular users. The first user
created during installation becomes an administrator. This user can then add additional users as
administrators later. A user cannot access profiles of other users or change the status of himself or
other users.

Users can login from the web page by providing their userid and password. The userid is a
unique identifier of the form user@domain and identifies a given user.

We use HTTP CGI [10] for implementing the web interface. The CGI scripts are written in
Tool Command Language (Tcl).
4.1 New user

A new user is created from the web interface by specifying a valid email address. In “portal mode”,
this requirement is relaxed (see section 4.3). Only those users with name in the list of local domain
can receive SIP calls; other users can use other services like conferencing. Email notification is
sent to the userid indicating the initial password. The initial password is randomly choosen by
concatenating three random words from a dictionary. A new record for this user is created in the
SQL database. The other user profile parameters (e.g., gwclass, realm) are taken from the default
user for the particular domain. For example if the userid is kns10@cs.columbia.edu then the user
profile parameters are borrowed from that of default@cs.columbia.edu. This default user profile
can be altered by the administrator. Users can later change their profile information including the
password.

4.2 User login

Users can log in by specifying the userid and password. The record from the SQL database is
fetched, then the hash value is computed using the userid, realm and password and is compared
against the database’s hash value. Authenticated users are provided with various options: editing
user profile, viewing voice messages, updating contacts and aliases information and so on. An
example web page is shown in Fig. 7. The userid and password is carried in HTTP cookies.
This means a user does not have to enter these values every time he visits the web page, unless he
explicitly logs out.

4.3 Portal mode

Our system can also be installed in a “portal mode” for providing services to users. This is done
by using an userid which need not be a real email address. The user has to provide an email
address for notification purposes. For example if the system is installed in “portal” mode at
domain “example.com” then all the registered users will have their useridas “user@example.com”
but can use their regular email addresses for notification purposes. In non-portal mode the userid
must be same as that of the email address. The non-portal mode is intended to be used within an
organization whereas the portal mode can be used by an Internet telephony service provider.

16

Figure 7: Example web page

4.4 Address book and calendar

The web interface allows users to maintain personal address books and event calendars. This is
useful for scheduling meetings and keeping track of reminders. The system can be configured to
send notifications, using SIP NOFITY mechanism [21], a regular email, or a SIP call when an event
is about to happen.

17

4.5 Billing and accounting

The web interface allows an administrator to see the log of all the calls made. It also permits him
to set tariffs for different types of calls. This is described in detail in Section 8.1.3.

18

5 Call Handling

This section describes how sipd handles an incoming call.
5.1 Canonicalization

hostname
mapping

sip:Bob.Wilson@conductor.cs.columbia.edu

Database

dial plan

success 7042@cs.columbia.edu hgs

User lookup

failure
success

sip:Bob.Wilson@cs.columbia.edu

1−to−1 mapping
no match

authentication

policy:
CPL, cgi, register

call routing

Contact list

failure

??????? tel:+1212$
7[01]?? tel:+1212939$
7134 sip:bob@cs.columbia.edu

phone numbers

sip:bob@cs.columbia.edu

Canonicalization

namemapping
alias

alice@cs.columbia.edu

conductor.cs.columbia.edu ==> cs.columbia.edu

bob@cs.columbia.edu

henning@cs.columbia.edu hgs

bob.wilson@cs.columbia.edu bob

Figure 8: Canonicalization, authentication and routing for a call

An incoming call is processed as shown in Fig. 8. Here, Alice, sip:alice@cs.columbia.edu calls
Bob, sip:Bob.Wilson@cs.columbia .edu. Through DNS SRV records, Alice’s user agent finds out
that the host conductor.cs.columbia.edu serves SIP requests for the domain cs.columbia.edu.
We assume that Bob can be reached in many different ways, for example, as bob, Bob.Wilson,
bob wilson, Bob.V.Wilson and webmaster.

After validating the syntax of the call request, the server transforms the callee address to a
canonical user identifier for database lookup, by first transforming the host portion and then the user
name portion. For example, the domain portion, conductor.cs.columbia.edu is canonicalized to
cs.columbia.edu. This is done by matching the domain portion of the request URI against a list
of possible domain names and IP addresses for SIP requests to this proxy server. In our case, this
includes the domain name cs.columbia.edu and the host name and IP address on which sipd is

19

running. If the canonicalized host name does not match, the server is being used as an “outbound
proxy server” and just routes the request to the SIP server for the domain, without any processing.
Outbound proxy servers are useful for logging and firewall control, for example. Outbound proxies
are not needed for “sip” URLs, but SIP requests with “tel” URLs need to designate such a proxy to
translate the telephone number into a routable SIP identifier. This SIP identifier can either point
to a PSTN gateway or be a regular sip:user@host URL.

The server first checks whether the SIP identifier is present in SQL put table. If it is present,
then the username is used unchanged and is the canonical user identifier. If it is not present, then
the server tries to translate the username into a canonical form by two transformations. In the first,
the SQL aliases table (described in Section 3.2) is checked to see whether an alias entry is present
for the user. If an alias is present, it is resolved to its canonical identifier user. In the second step,
the name mapper function searches the SQL person table to see if it can deduce a username, by
comparing the user part of request URI to various combinations of the first, last, and middle names
recorded in that table. (In the example, the name mapper determines from the person table that
the name “Bob Wilson” corresponds to a non-NULL PUT entry for the user bob.)

Finally, the server checks whether the user identifier is a telephone number or not. A request
URI for telephone numbers can be of the form:

1. tel:number

2. sip:number@domain;user=phone

3. sip:number@domain

Note that for the “tel” URL, the domain portion does not exist hence there is no need to canonicalize
the domain part. The number can have an optional prefix of “+” to indicate a globally routable
number, e.g., +1-212-9397000. The first and second cases specifically tell the server that the
address is a telephone subscriber. A heuristic is used to determine if the address matches the
third case. A database lookup is done to compare the address against the available user names
and aliases to find a match. This allows to create telephone number as user identifier or to create
telephone number aliases for user@domain. If the resulting address is still a telephone number, it
is canonicalized using a dial plan, described in Section 6.1. If none of the rules match, the user
identifier is returned unchanged to the server.

The SIP server then retrieves contact and policy information for the user bob@cs.columbia.edu.
The policy information describes how the call is handled, for example whether it is to be proxied
or redirected. Bob’s preferences and policy are then executed. These may, for example, demand
that a calling user be authenticated, refuse or redirect calls, or apply preferences about where Bob
wants to be reached. If the server determines that Bob’s current policy allows Alice’s call to reach
him, it contacts Bob’s list of registered locations. Bob’s current SIP phones ring, he picks up the
handset and starts talking to Alice. When they are done, either of them can terminate the call.

If the callee’s contact location is a telephone number, then the dialplan matching is done on the
contact location as described in Section 6.1. The dialplan leads to a gateway to reach the PSTN
destination.

If there are multiple contacts found for the user, then all of the contact locations are used.
The preference values (q-value) of the contacts are used to order the contact locations. The more
preferred value is tried first, and if it fails or times out, the next preferred location is used. If
multiple contacts have the same or similar q values, then the server forks the call request to
all those locations in proxy mode. In redirect mode, it returns all those contact information
back to the caller. For example, if user sales@company.com, has locations rep1@pc1.company.com
(preference 1.0), rep2@pc2.company.com (preference 1.0), rep3@pc3.company.com (preference 0.8),
senior-rep@company.com (preference 0.3) and manager@company.com (preference 0.3) then a call
to sip:sales@company.com is first forwarded to both rep1 and rep2. If they do not pick up the

20

phone or the call fails, then rep3 is tried. If rep3 also does not answer the call, then it is forwarded
to senior-rep and manager simultaneouly. The forking behavior with the configurable priorities for
different contact locations can achieve enhanced automatic call distribution (ACD).

Unlike PSTN switches, SIP servers normally do not store any call state, that is, state that
needs to be maintained until the call completes. They are responsible only for forwarding signaling
requests and responses such as call initiation and termination messages, and other messages like
instant messages. While the call initiation message goes through the SIP server, the call termination
message may be directly exchanged by the two user agents without any SIP server. However, the
server can insist on being in the call path for subsequent messages using the SIP Record-Route
header [12]. This is useful for call logging and accounting.

5.2 Programmable call handling

When receiving an incoming call request, the SIP server finds the current user location and either
proxies, redirects or rejects the call initiation message. Although this simple model satisfies most
user’s needs, some advanced users may want a more complex scenario. For example, “reach me
at my office phone during office hours and call me at my home after office hours, or don’t disturb
me when a tele-marketer calls.” This can be implemented by uploading a piece of software on
the server, which governs its behavior based on the time-of-day or caller identification. SIP allows
many different ways to achieve this, for example, via the XML-based Call Processing Language
(CPL [26, 17]) and the SIP Common Gateway Interface [18]. Our SIP server supports both CPL
and SIP-CGI. SIP Servlet [16, 1] implementation is in progress. The piece of software which alters
the server behavior, either a SIP-CGI or a CPL script, can be uploaded to the server using a SIP
UA such as sipc, or from the web interface.

5.2.1 CGI: Common Gateway Interface

SIP-CGI is similar to HTTP-CGI. SIP-CGI scripts can be written in any language. It has the same
potential security problem as HTTP-CGI, and it should be allowed only in a trusted environment
since users are allowed to execute arbitrary code. The SIP server runs the script as an external
process, passes all the parameters needed by the script (e.g., caller URI, subject headers, etc.) and
gets back the response from the standard output of the process. The response indicates how to
handle the call, for example, proxy it, redirect or reject.

Fig. 9 shows an example of a SIP-CGI script written in Perl that increases the priority of the
call made by userid hgs.

5.2.2 CPL: Call Processing Language

The Call Processing Language (CPL) is a language that can describe and control Internet telephony
services. It is implementable on either network servers or user agent servers. It is simple, extensible,
easily editable by graphical clients, and independent of operating system or signalling protocol. It
is suitable for running on a server where users may not be allowed to execute arbitrary programs,
as it has no variables, loops, or ability to run external programs.

An example of a service is a calendar-based call routing system. Calendaring and scheduling
information formatted as iCal [7] is combined with a policy file and then converted into a CPL
script, which is uploaded to the server. The policy expresses rules such as “if Joe calls and I’m
busy (according to my calendar), forward to secretary”. Services can also be driven by caller
preferences [35], where the caller indicates desired call routing and handling behavior. For example,
a caller may request that calls are not forked or that calls are not routed to voicemail or attendants.

Fig. 10 shows an example CPL script for time-of-day based call routing. The idea is to proxy
the call to the registered location during office hours and forward the call to voicemail otherwise.

21

#! /usr/bin/env perl -w

Prioritize messages whose ’From:’ matches ’sip:hgs@’
by proxying them with ’Priority: urgent’.

Translate the REGISTRATIONS env variable into a list
of registration addresses, without name-addr forms
or parameters.

sub get_regs {
my($reg_str, @regs);

if (!defined($ENV{REGISTRATIONS})) { return (); }

$reg_str = $ENV{REGISTRATIONS};

Kill quoted strings.
A quoted string consists of a pair of quotes, surrounding the following:
1. any character other than a backslash or a quote
2. a backslash preceeding any character
This handles all "some number of backslashes before the trailing quote"
problems.
$reg_str =~ s/\"([^\"\\]|\\.)*\"//g;

Now, all commas are syntaxtically significant, so it is safe to split
on them.
@regs = split(",", $reg_str);

grep {
Eliminate parameters, then strip <> forms.
s/;.*//;
if (/\<(.*)\>/) { $_ = $1; }

} @regs;

return @regs;
}

if (defined $ENV{SIP_FROM} && $ENV{SIP_FROM} =~ /sip:hgs@/) {
foreach $reg (get_regs()) {

print "CGI-PROXY-REQUEST $reg SIP/2.0\n";
print "Priority: urgent\n\n";

}
}

Figure 9: SIP-CGI example: call priority

22

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL 1.0//EN" "cpl.dtd">

<cpl>
<incoming>

<time-switch tzid="America/New_York"
tzurl="http://zones.example.com/tz/America/New_York">

<time dtstart="20000703T090000" duration="PT8H"
freq="weekly" byday="MO,TU,WE,TH,FR">

<lookup source="registration">
<success>
<proxy />

</success>
</lookup>

</time>
<otherwise>
<location url="sip:jones@voicemail.example.com">
<proxy />

</location>
</otherwise>

</time-switch>
</incoming>

</cpl>

Figure 10: Example CPL script: time-of-day routing

23

6 PSTN Inter-operation

6.1 PSTN-to-IP call

PSTN subscribers are identified by telephone numbers rather than SIP URLs, email or IP addresses.
A PSTN user can reach the gateway by dialing any of the extensions assigned to the gateway’s
T1 line. For example, our PBX has assigned extensions in the range 7130-7139 to the gateway.
So anybody who dials (212) 939-7134 reaches the gateway at extension 7134. An example of a
PSTN-to-IP call is shown in Fig. 11.

Figure 11: A PSTN-to-IP call

On the gateway, we need to define a voice-over-IP call-leg specifier (called a dial peer). An
example Cisco configuration where the SIP server’s IP address is 128.59.19.622 , is as follows:

dial-peer voice 1 voip
preference 1

2The IP addresses and net masks are not necessarily real.

24

destination-pattern 713[0-9]
voice-class codec 1
session protocol sipv2
session target ipv4:128.59.19.62

The following example dial peer specifies 7-digit POTS (Plain Old Telephone Service) local calls
from SIP to PSTN:

dial-peer voice 1005 pots
preference 6
destination-pattern 8.......
no digit-strip
port 1/0:1

A “.” is a wildcard for any digit, and “8” is the prefix the user must dial to reach a number outside
our PBX. The “preference” parameter is used to match dial peers in a certain order: Lower value
means higher preference. If not listed, the default preference is highest with value 0.

When a call comes in from the PSTN, the gateway can react in one of the two modes,
direct-inward-dialing (DID) or no-DID. In DID mode, the incoming trunk delivers the destina-
tion extension to the PBX or gateway. So a call to 7134 is forwarded to the SIP server as
sip:7134@128.59.19.62. The SIP server maintains a mapping between the telephone number and
the user identifier. The mapping is called a dialplan. For example, 7134 can be mapped to
sip:bob@cs.columbia.edu so that the above call reaches Bob at his SIP phone (see Section 5). For
the 713x range, the DID mode can support only up to 10 users. In the no-DID mode, the gateway
will prompt the caller with a second dial tone. After the caller dials a new extension, it is captured
and forwarded to the SIP server. The differences between the two modes are summarized below.

Mode usage advantages
DID dial directly simpler dialing from PSTN

No-DID dial extension supports more users

The SIP server also supports ENUM [9] for translating a telephone number to an URI. So if
the call is made to 7134, as in the previous example, and ENUM is used then the server tries to
do DNS lookup for the hostname 4.3.1.7.9.3.9.2.1.2.1.enumdomain. This lookup can yield a “tel”
or “sip” URI. The enumdomain is configurable.

6.2 IP-to-PSTN call

In the reverse direction, when a SIP user dials a telephone number, e.g., sip:9397040@cs.columbia.edu,
the SIP server transforms the telephone number to the telephone subscriber tel:+12129397040.
Also, as is typical for PBXs, the same number can be dialed in a number of different ways, for
example, as a four-digit extension (7042), as a local phone number (939-7042) or as a global number
(1-212-939-7042), with country code. In addition, PBXs often designate a digit such as 8, 9 or 0
to reach an outside line. Thus, for IP telephones, which often follow the mobile phone model of
requiring an explicit indication of the end of a phone number, a large number of variations need
to be unified into a single global number which can then be used to determine the appropriate
gateway. An example of an IP-to-PSTN call is shown in Fig. 12.

This model is reflected in the following sample dialplan used for our server, where both a 4-digit
extension and a 7-digit local number are mapped to a canonical format with country code, area
code, and local number. The symbol “$” is substituted by the matched string on the left column,
while “?” matches a single digit and “*” matches any digit string. Visual separators like “.”, “–”,
“(” and “)” in the telephone number are ignored on the left hand side of the pattern. When the

25

Figure 12: An IP-to-PSTN call

first match is found, everything which matched outside the parenthesis is used for substituting “$”
on the right column. In example dialplan of Fig. 13 both “9397040” and “89397040” are translated
to “tel:+12129397040”. If more than one rows match, then the row with higher priority value is
used.

Figure 13: An example dialplan

The server then locates the appropriate gateway to route the call to the PSTN. For an orga-

26

Figure 14: An example gateway-map

nization with a small number of gateways, a static table, as currently used in sipd, is sufficient. If
networks of IP telephony gateways are deployed, more complex routing protocols such as TRIP [27]
may become essential. TRIP allows to route the call to the optimal gateway, e.g., the one closest to
the destination. Here the meaning of closeness may be defined in terms of geographical proximity,
QoS parameters, or per-call cost.

In our system, each local user is assigned a “gateway class”, such as faculty, phd or student as
shown in Fig. 14. In this example, faculty can make calls to any long distance number but student is
allowed only intra-department or toll-free numbers through the gateway itgw1.cs.columbia.edu.
No gateway is choosen if the user class and destination pattern do not match any row in the
gateway map. In which case, the server may terminate the call as the caller does not have sufficient
privileges. If more than one rows match, then the row with higher priority value is used.

Note that we need special provisioning in the SIP server so that the telephone number as dialed
by the caller is billed to the caller, whereas the telephone number present as a contact location for
a user (callee) is billed to the callee. This means the gwclass authorization is done for the caller in
the former case and for the callee in the latter case.

6.3 Connecting to the PBX

PBX (Private Branch eXchange) is used in many corporations and universities. It centralizes
telephone management, consoliates external trunk lines and voice mail. Our PBX is a Nortel
Meridian Option 11C. It has an external T1 line to the public telephone network, capable of 24
incoming/outgoing calls. It also has an internal T1 line to connect with the PSTN/IP gateway.
With this topology, a user can make IP telephone calls from either an analog phone (whether
inside or outside the department) or a SIP UA. Fig. ?? shows our installation with two SIP-PSTN
gateways, one to the department PBX and the other to the University telephone switch.

During deployment, we encountered quite a few problems that are worth describing. Many of

27

SIP UA SIP Server

internal T1/CAS

PSTN (Verizon)

Regular Phone (internal)

Ethernet

SIP/PSTN Gateway

External

T1/CAS

University Switch

Department PBX
SIP/PSTN Gateway

Figure 15: PBX set-up; an incoming call flow

them have to do with the proprietary and arcane nature of PBX systems.

T1 line type: A T1 line can be either channelized or PRI [5, pages 446-447]. The former supports
24 DS-0 (64 kb/s PCM) voice channels, and uses Channel Associated Signaling (CAS). CAS is
a form of in-band signaling, where some bits in each voice channel are “robbed” for signaling,
hence the nickname robbed-bit signaling. In comparison, PRI supports 23 DS-0 B (voice)
channels plus 1 DS-0 D (signaling) channel, and uses an out-of-band signaling method known
as Common Channel Signaling (CCS). PRI is a form of business grade narrow-band ISDN.
Channelized T1 has more voice channels, but each channel is not full 64 kb/s, and it is not
guaranteed to provide advanced features such as Caller-ID. We use channelized T1 in our
PBX for both T1 lines. The PRI service may require additional hardware in the PBX’s T1
line-card.

Line type voice channels signaling caller-ID
Channelized 24, robbed-bit CAS maybe
PRI (ISDN) 23B + 1D CCS yes

T1 line characteristics: T1 lines can use several different line codings, including Alternate Mark
Inversion (AMI) or Bipolar 8 Zero Substitution (B8ZS) [5, pages 175-182]. We recommend
B8ZS because it provides a full 64 kb/s for each DS-0 channel, whereas AMI steals one out
of every eight bits (leading to a 56 kb/s channel), thus degrading the voice quality. The line
coding is not always independent of the line type. For instance, AMI cannot be chosen with
PRI, because PRI requires a full 64 kb/s channel. Second, one needs to select a framing type,
usually either Super Frame (SF), also known as D4, or ESF (Extended SF) [5, pages 210-216].
We choose ESF, which is more advanced and should be supported on most PBX systems.

Trunk type: The most popular trunk types are DID (Direct Inward Dial) and TIE. A TIE line
is a bi-directional trunk line. The name TIE comes from the fact that the trunk line “ties”
two nodes together. We recommend configuring the T1 line as a TIE trunk, because it allows
both DID (incoming) and outgoing calls.

Channel type: The channel type can be data, voice-only, or data/voice. This is a crucial pa-
rameter. If a channelized T1 line is used on a Meridian system, the channel type must be

28

set to voice-only, otherwise, IP-to-PSTN calls may fail as the PBX could treat a call as
data transmission. In a Nortel Meridian PBX system, this parameter is named DSEL (Data
SELector).

Access permissions: Nortel Meridian systems use a concept called Network Class Of Service
(NCOS). Typically, a low NCOS means low access permission. For example, 1 may indicate
internal or local call only, and 7 may indicate all long-distance allowed. To restrict SIP phones
to local PSTN (outgoing3) calls only, the administrator should specify a NCOS of 1 for the
internal T1 line.

For incoming calls, however, the scheme is less obvious: when a call arrives at the PBX,
whether incoming or outgoing, the calling entity’s NCOS is compared against the callee’s
NCOS in the PBX call routing table. Note that the callee in this case is not the internal
T1 line, but the 713x range - a virtual entity. The calling entity for an incoming call is the
external T1 trunk, and it usually has a NCOS of 0. The call goes through only if the caller’s
NCOS is high enough. In our test-bed, the 713x range is a virtual phone number range, being
a part of what is called Coordinated Dialing Plan (CDP). One must ensure that the routing
entry for this CDP (713x) range has an NCOS value less than or equal to the caller’s NCOS,
so that incoming calls can be accepted. Therefore we use an NCOS of 0 for the CDP entry.

These issues are summarized in Table 8.

T1 attributes common choices recommended
Line Type Channelized, PRI

(ISDN)
PRI, used
channelized

Line Coding AMI, B8ZS B8ZS
Framing D4(SF), ESF ESF
Trunk Type DID, TIE TIE
Channel Type data, voice-only, voice-

Data
voice-only

Table 8: Summary of key attributes

3Here outgoing and incoming are viewed from the perspective of the PBX (or the department).

29

7 Security Issues

We need to deal with three security-related issues, namely user registrations, remote callers and
access to the PSTN. First, user registrations need to be authenticated to prevent unauthorized
users from redirecting calls to themselves or elsewhere. We use digest authentication, where a
shared secret between the server and the client is verified via challenge-response. The use of digest
authentication is a system-wide parameter that can not be over-ridden by per-user configuration.
However, users can configure their profiles to do a more fine grained authentication on incoming
calls. A local user may choose to force remote callers to be authenticated or may allow incoming
calls from any user. Fig. 16 shows the message flow for typical REGISTER and INVITE messages.

We cannot rely on a public key infrastructure, so we chose a more pragmatic, albeit less secure,
approach. Our authentication goal is to establish a consistent mapping between a caller’s SIP
identity and her email identity. If a caller is unknown, a mail message is sent to the same identifier,
treated as an email address. The mail message contains a randomly generated password and a
link to the original called SIP URL. The caller simply retries the call after receiving the email
message and stores the secret for future use. This ensures that the SIP caller is indeed identical to
the corresponding email address. (One approach that does not work is to simply have the callee
issue an INVITE in the reverse direction. This could be easily abused to cause somebody to make
nuisance calls to a third party.)

It should be noted that it is much harder to use call filtering to prevent VoIP crank calls than
their PSTN equivalent since Internet identifiers are abundant and cheap. However, it is possible to
at least restrict unknown callers to, say, daytime hours or leaving voicemail.

Finally, we need to restrict access to the PSTN gateway so that not everyone can make unau-
thorized calls through our gateway. The next subsection elaborates on this issue.
7.1 PSTN security

In most cases, only an outgoing call incurs a toll charge. The last line of security in such case is
the PBX, but the PSTN/IP gateway and the SIP proxy server are in general much more flexible
and programmable. Currently, our gateway does not have user authentication and authorization
capability, so we delegate this functionality to the SIP proxy server, so that only authorized users
can make calls. However, if a user discovers the gateway’s IP address, he can still bypass the proxy
and make free calls. To enforce security without adding security code to the gateway, we can make
the gateway reject direct-dialed calls. Since our gateway is a fully functional Cisco 2600 router with
IOS (Internetwork Operating System), we can use the IOS Access Control Lists (ACL) to accept
SIP requests only from the proxy, but accept UDP media streams from all potential users. The
following example IOS ACL blocks certain inbound traffic on the gateway 128.59.19.61. Its subnet
has a net mask of 255.255.255.0, hence its ACL’s reverse mask is 0.0.0.255. The gateway would
allow UDP media packets from machines on the same subnet with port number range 512 to 65535.
However, since SIP requests are typically carried on UDP port 5060 (inside 512-65535), to reject
“direct-dialed” SIP calls, our ACL allows a UDP packet only if its destination is not the gateway
(128.59.19.61)’s SIP port (5060). Note that the SIP proxy server (128.59.19.62)’s request will still
be honored because ACL rules are evaluated in the same order they are defined.

interface FastEthernet0/0
ip address 128.59.19.61 255.255.255.0
ip access-group 101 in

30

B:

put::auth is

required:

if authentication fails
 reject "407 unauthorized"
else
 continue proxy

requested:

If password absent
 reject "407 unauthorized"
else if password present but incorrect
 send provisional "183 authentication failed"

 continue with proxy

else successful authentication
continue with proxy

never : no authentication needed

A:

if sipd_config::auth_method != none

if authentication fails

else

accept "200 OK"

reject "401 unauthorized"

sipd

200 OK

REGISTER

401 Unauthorized

with password
REGISTER

User phone

ACK

Caller

407 Auth needed

ACK

ACK

200 OK

INVITE

200 OK
180 Ringing

180 Ringing

INVITE

(B)

(A)

with password
INVITE

Figure 16: Message flow for REGISTER and INVITE with authentication

...
access-list 101 permit ip host 128.59.19.62 any
access-list 101 permit udp 128.59.19.0 0.0.0.255 \

range 512 65535 host 128.59.19.61 neq 5060

There is a potential security problem of spoofed IP address. For example, if a malicious caller
spoofs its IP address as one of the allowed IP addresses for the INVITE request to a long-distance
destination, the telephone call is initiated and billing starts as soon as the remote destination
picks up the phone. However, the “200 OK” response will get routed to the SIP proxy server
(128.59.19.61) instead of the malicious caller. Since the call setup response (200 OK) can not be
ACKed by the spoofed address, the gateway will timeout and terminate the call in approximately
one minute. However, the system will get billed for the first minute of the call. To prevent

31

such attacks, we can use challenge-response kind of authentication (e.g., digest). A simple null
authentication scheme [30] can be used by the gateway to challenge the SIP proxy server so that
the gateway knows that the source IP address is not spoofed as it can be reached by the initial
“401 Unauthorized” response.

All the calls from the gateway are forwarded to the SIP server. This configuration, along
with the SIP Record-Route mechanism that forces subsequent requests within a call to traverse a
designated set of proxies, allows call logging and billing services to be part of the SIP server.

7.2 TLS: Transport Layer Security

Confidentiality, integrity protection, and server-client authentication for SIP call signaling messages
can be provided using TLS [8], an IETF standard security protocol that resides logically on top of
TCP. TLS is commonly used in web (using the https URL scheme) for authentication and encrypted
communications between clients and servers. TLS allows the client to authenticate the server and
vice-versa, select mutually supported cryptographic algorithms (or ciphers), generate shared secrets
using public-key encryption, and establish an encrypted connection for data exchange by higher
level protocols.

We use the OpenSSL TLS library [2] for providing TLS services in our SIP server, sipd. sipd
can accept TLS connections, and proxy SIP requests and responses using TLS as transport. sipd
currently allows server authentication. This means that UAC’s (user agent client) can authenticate
the server. We will add client authentication by which a UAS (user agent server) can authenticate
the server instead of otherwise. An important thing to note that, if a user has registered contacts
only for UDP or TCP, sipd will proxy an incoming call through UDP or TCP by normal SIP forking
mechanisms, which could potentially limit the security-advantage gained on the first hop of the call
path. Support for “sips:” URI scheme is in progress.

7.3 Anonymous access

The expanding popularity of the Internet presents new possibilities for communication, but also
new implications for the users’ privacy. There are many reasons why a user on the Internet might
wish to remain anonymous. However, even to a casual investigator, it is often possible to determine
the identity of an Internet user, e.g., using IP addresses. For this reason, many Internet developers
and entrepreneurs have set up anonymizing services designed to hide the identity of their users for
web or email applications.

A SIP call anonymizer can be implemented as a back-to-back user agent (B2BUA). The anonymizer
receives a SIP INVITE request, changes the From header and sends out the request to the actual
destination. Anonymizers thus maintain a mapping between real SIP addresses and anonymous
ones. Thus, whenever a request comes in destined for an anonymous address, the translation is the
reverse of the normal case and the From address is maintained, while the To address is set to the
corresponding real address. Whenever a response is received to a previously forwarded request, it
is forwarded in the proper direction. The anonymizer also sometimes must generate responses of its
own; for example, a remote address might be unresolvable, in which case the user will be notified.
The anonymizer re-writes the IP addresses in the SDP of the request and responses and then acts
as a simple UDP relay for RTP/RTCP media packets.

Our implementation provides supports both in-memory (hash table) or external SQL/JDBC-
based databases for maintaining mappings. It should be noted that, when using a database backend
for the anonymizer, anyone who can read the database has immediately compromised all users’
identities. When setup as a service for multiple users, the software automatically generates a
random SIP address of the form anon-nnnn@hostname where nnnn are four random letters. For
the outbound proxy case it takes care to prevent two different users accidently ending up with the

32

same randomly-generated address. It also supports sending and receiving of instant messages using
the SIP MESSAGE method.

Sometimes, a user will wish to hide his IP address but still use a known SIP address to com-
municate with another party. If a user agent sends a REGISTER message to our implementation,
the address in the REGISTER message will become the client’s new anonymous ID, replacing the
default randomly-generated address. In addition, it can be configured to forward notice of these
registrations to some central directory server. So, a user who wishes to use a publicly-known SIP
address without revealing his IP address can do so.

It is important to look into possible attacks that might be used to compromise a user’s anonymity,
and how they might be defeated in the future. Without the use of other security measures, anyone
who has access to the network segment containing the anonymizer can spy on the network traffic
and guess the identity of any anonymous users. The easiest way to do so would be to compare
messages coming into the anonymizer with those coming out, and note any similarities. TLS/SSL
can be used to resolve this.

7.4 Other issues

One issue can be raised: what happens if the user allows both secure and non-secure connections.
For example, if the user’s contact locations list both TLS and non-TLS contacts, should the proxy-
server try to use the secure location before attempting the non-secure contacts. Secondly, how
should we allow services to both authenticated and un-authenticated users. For instance, allow
leaving a voicemail for non-authenticated caller, but forward the call to the cell-phone for authenti-
cated callers (because the callee will be billed for the telephone location in the contact). We can use
the q value in the contact locations to specify the preference for various contacts. So the user can
give higher preference for the TLS contact. SIP servers can allow anonymous access with restricted
privileges.

Security of the whole system is defined by the security of the weakest link in the system. So
to make the system secure all components must use high degree of secure protocols. Security loop
holes are exploited usually in the weaker parts of the system. For instance, users should be careful
in trusting the certificate authority otherwise an intruder and generate spoofed certificate and get
access to the secure SIP services.

33

8 Monitoring and Accounting

8.1 Logging and accounting

Next to call establishment and teardown, call logging is probably the most important feature in
any telephony system. Call logging is needed for generating accurate and verifiable billing records.
In addition, accurate call logging information can help understand usage behavior of the system
and can help in system dimensioning.

Our SIP server sipd allows administrators to configure a variety of loggers including text (flat)
file, SQL, RADIUS, and Unix syslog facility. In addition, log output can be piped to another
running program. Use of the pipe mechanism allows us to easily extend the system behavior. For
example, piped output could be fed into an SNMP monitor, which will generate traps for every
“407 Not authenticated” error, and could inform an administrator if call failures exceed a certain
thereshold.

8.1.1 SQL

The primary logging mechanism that helps us to generate billing records is the SQL database.
For every transaction served by sipd several parameters are logged in the requestlog SQL table
(described in Section 3.2). In particular, the SIP method (INVITE, ACK, BYE, REGISTER), the
status code (which indicates whether the transaction was successful or failure) and the canonical
identities of the caller and callee are logged. The SIP server also logs the Call-ID which uniquely
identifies the various messages exchanged as part of the same call. The Call-ID is useful for matching
the call setup and teardown requests and hence helps us to calculate the duration of the call. It
is to be noted that SIP allows call teardown (BYE) messages to be exchanged directly between
endpoints. The use of SIP Record-Route mechanism forces the endpoints to send the teardown
message through to the SIP server.

8.1.2 RADIUS

In order to integrate CINEMA into existing telephony infrastructures, it is necessary that the
accounting information generated by the SIP server is communicated to and usable by external
AAA accounting [4] servers. One protocol that helps achieve such interoperability is RADIUS
(Remote Authentication in Dial-In User Service) [23], which is a protocol that can be used for
carrying accounting information between network entities. RADIUS has traditionally been used
by ISP’s to provide authentication and accounting services to their dialup customers. Its extension
mechanism [22] allows us to easily extend these messages to carry SIP transaction records. Our SIP
server sipd can be used as client of one or more RADIUS servers. Addresses of RADIUS servers
are configured in the SQL database. For each transaction sipd sends a RADIUS message to the
RADIUS server with the details of the transaction as defined in [32].

8.1.3 Billing

In this subsection we describe how the SQL call logs generated by the sipd server are used to
generate accounting information.

34

Telephony pricing structures usually follow a differential model instead of a fixed flat-rate model.
For instance, they could depend on time-of-day, user type and destination number. Charge per call
could be determined based on the type of the call, type of the user and time-of-day. For example,
international calls made during night time could be charged less than those made during the day.
Another scenario could be in a campus environment where telephone calls are free for faculty
whereas students may have to pay for their calls. We use a flexible configuration scheme where a
particular telephone number prefix could be associated with user classes and time periods. Fig. 17 is
an illustration of how tariffs are configured. $/unit is the call rate per increment time unit. The
total charge per call is computed as [ceil(call duration/increment)] * rate. For example, if
the rate is $0.15 with increment 6 seconds, then a 40 second call costs ceil(40/6)*0.15= 7*0.15
= $1.05.

Figure 17: Sample tariff configuration

Telephone number prefixes are standard regular expressions, hence a “*” matches zero or more
digits. A leading “+” is used to indicate a globally routable (international) number. Rules are
matched in a first to last order, and based on the caller’s user class so that the telephone number
12129397028 will match the rule 1212* if it is made by a user belonging to the “faculty” user class,
but will match the 1* rule if made by other classes of users.

8.2 Monitoring with SNMP

Similar to classical PSTN systems, an Internet telephony system should be highly available with
negligible downtimes. Call routing depends on the proper functioning of the SIP server and hence
it is necessary to have a mechanism by which the state of the SIP server can be monitored, with
the administrator being alerted when necessary. SNMP [6] is a protocol that can be used for
this purpose. We have implemented a SIP MIB [19] on our SIP server using the Net-SNMP [3]
framework. Any SNMP station can be used to query and monitor our SIP server. An example
screen shot of one such station, MG-SOFT MIB browser4, is shown in Fig. 18. Our SIP server can
also be configured to send SNMP traps when events of interest occur. As an example, the server
can send trap notifications to the SNMP station when the call arrival rate exceeds a configured
threshold.

35

Figure 18: SNMP agent for SIP MIB

Figure 19: CINEMA monitor

8.3 Server monitoring

In addition to SNMP-based trap notifications and monitoring, we also provide a web-based user
interface by which administrators can check the liveness of various CINEMA servers (probing),
start and stop them. This is shown in Fig. 19. The “Activity” column indicates whether the

4http://www.mg-soft.org

36

server process is running on the host. The “probe” option can be used to determine the activity by
sending a SIP OPTIONS message to the server host and port. We use this to find out if the server
process is actually handling requests or has gone into some non-processing (e.g., deadlock) mode
due to some program error.

37

9 Other Services

This section describes other services provided by the system, including unified messaging (Sec-
tion 9.1), multi-party conferencing (Section 9.2), instant messaging and presence (Section 9.3),
interactive voice response (Section 9.4) and IPv6 support (Section 9.5).
9.1 Unified messaging

Answering machines and voice mail systems are crucial PSTN components. They are equally
important in an Internet telephony environment. Installing the voice mail service on every SIP
phone is inefficient and inconvenient if the user has many phones. Secondly, it may not work if
the user has calls forwarded to many different devices. Also, end-system-based answering machines
place a high premium on the reliability of those end systems. Centralized voice mail systems have
an advantage in the centralized management of user accounts and configuration. An Internet-based
voice mail system can be integrated easily with other Internet services like email, web, video mails
and fax, giving an unified messaging environment. Moreover, it can use the existing protocols and
tools, like SIP and RTSP (Real Time Streaming Protocol [33]).

Figure 20: User voicemail web interface

Our system uses SIP for signaling and RTSP for storage and retrieval of voice messages as
described in [38]. The user gets an email notification when a new message arrives. The user
messages are also listed on a web page as shown in Fig. 20, where they can be played by just a
mouse-click. Alternatively, an RTSP client such as Apple’s QuickTime can be used to play back the
message. Using streaming media to deliver voicemail avoids having to download the whole message
while traveling, for example.

9.2 Multi-party conferencing

Multi-party conferencing is also an important telephony service, provided in the PSTN by confer-
ence bridges. Our Internet telephony environment employs a SIP conference server with audio and
video capabilities. The conferences can be set up via a web interface.

38

Every conference is identified by an address similar to the canonical user identifier, e.g., staff-
meet@cs.columbia.edu. Users join the conference by dialing that conference address. A telephone
number alias can be created for the conference so that regular PSTN users can also take part in
conferences.

We are planning to extend the system to provide dial-out conferences instead of the traditional
dial-in conferences. In this mode, the conference server itself invites the participants at the start
of a pre-configured conference.

The SQL database stores various conference attributes and can be updated from a web page.
These include the conference identifier, duration and schedule, authentication mechanism for re-
stricted conferences, limit on the number of participants, types of media allowed. The participant
list can be further restricted by defining different capabilities for different set of participants. For
instance, one may want a conference where anybody can listen but only users located on the
cs.columbia.edu domain can send media. Authentication of PSTN phones requires some form of
voice interface (Section 9.4).

9.3 Instant messaging and presence

Presence and instant messaging are popular Internet services that need to be supported both by
servers and clients. Combining presence and Internet telephony offers improved services, reducing,
for example, the number of failed call attempts or automatic redirects to voice mail. Users subscribe
to each other and are notified of changes in state (such as online, offline, busy, idle) and can send
each other short instant messages. SIP-based instant messaging and presence provides a standard
way to send instant messages and form buddy lists. Presence can be coupled to phone status,
marking the user as busy when in a phone call.

Our SIP server, sipd, has a built-in centralized presence server that is used to store and convey
presence status. In this model, user Alice who is interested in the presence status of Bob subscribes
to a server conveying her interest. The server keeps track of subscriptions for each user. When Bob
comes online, his user agent registers with the SIP server, providing Bob’s contact address. The
server then uses this registration information to asynchronously notify Alice about Bob’s status.

Our user agent, sipc, can retrieve presence information about buddies from a SIP presence
server such as sipd. The status of buddies is displayed as part of the user’s address book. Users
can exchange instant messages with their buddies using the SIP MESSAGE [29] method that can
be sent either directly, or through a proxy server.

9.4 Interactive voice response

An Internet telephony system should also be capable of providing services such as listening and
deleting voicemails, or authentication when joining conferences to a PSTN user who is limited to
using the telephone keypad and spoken audio for supplying input.

VoiceXML [40] is an XML-based markup language for voice dialogs, is designed to ease creation
of audio dialogs. These audio dialogs feature synthesized speech, digitized audio, input speech
and DTMF recognition, and audio recording for telephony applications. The separation of user
interaction code (such as DTMF and speech recognition) from the service logic (email by phone,
providing weather reports) facilitates development of a variety of interactive voice-response services.

We have built a SIP-based VoiceXML browser that allows telephone users to interact with
CINEMA components. This component resides between the SIP/PSTN gateway and the voice
mail or conferencing service in our system. A dialog specification for a service such as voice mail
access is specified in VoiceXML. Our browser fetches this dialog from a web server (using HTTP)
and interprets it in a form suitable for PSTN users.

39

9.5 IPv6 support

This section describes our experience in implementing IPv6 in CINEMA components. The main
advantage of IPv6 over IPv4 is that it has more address bits and thus solves the address space
problem at least in the forseeable future.

On startup, CINEMA applications determine whether the host system has usable IPv6. Some
hosts can have different IPv4 and IPv6 host names (e.g, thalys.cs.columbia.edu for IPv4, and
thalys.cs.ip6.columbia.edu for IPv6). In such cases, the IPv6 hostname needs to be explicitly
passed either through configuration file or via the command line. The hostname is then resolved
into an IPv6 address. If the application is unable to get an IPv6 address for the supplied host
name, the IPv6 module is disabled even if the operating system has support for IPv6. This can
happen, for instance, when no IPv6 addresses are configured for the system’s network interfaces.

All name-address mappings are handled first by using OS support (getaddrinfo, getnameinfo,
gethostbyname, gethostbyaddr, the latter two are used when former are unavailable), and then by
querying a name server. SRV records are always resolved by contacting the name server. Currently,
CINEMA can contact only IPv4 name servers. However, it can recognize and use AAAA address
records. Name server configuration is specified in /etc/resolv.conf file for Unix systems, and
resolv.conf file in Windows systems.

All SIP URI’s with IPv6 address have the numeric address enclosed within brackets, e.g.,
[1080::8:800:200C:417A]. Our proxy server can proxy between IPv4 and IPv6 hosts. How-
ever it is up to the user agents to negotiate a suitable network address for media transmission. In
order to facilitate SIP requests such as BYE between hosts using heterogenous network addresses,
the record route mechanism should be used. This will cause all subsequent requests to take the
same signalling path (through the proxy server, which can handle the heterogeneity).

If both A and AAAA records are returned by the name server during a SRV lookup, our
implementation will always try the A record first. There are three ways to implement the Contact
header generation: use IPv4 address, use IPv6 address or put two Contact headers containing both.
The last option is needed if the IPv4 and IPv6 hostnames are not the same. Our implementation
prefers the IPv6 host name if the registrar or outbound proxy is a IPv6 host. For the user agent
library, when the stack initiates a call it adds both IPv4 and IPv6 addresses to the SDP media
description, if the host is IPv6 capable.

40

10 Implementation

Many of the architectural components described in section 3 are implemented in C/C++ (e.g.,
sipd, rtspd, sipconf, siph323 and sipum). All these pieces of software share the common code base
wherever possible. The common part is identified and abstracted as a set of libraries. Then the
applications are built on top of these libraries. The libraries and the applications consititute the
Columbia InterNet Extensible Multimedia Architecture (CINEMA). This section describes
the various modules used for implementing the system and discusses the design details of the SIP
library.

Figure 21: Software Design Modules

The layered hierarchy of various sub-modules is shown in Fig. 21. The lowest transport layer
is assumed to be TCP or UDP. We use the standard socket interface for this layer. A generic
HTTP message parsing layer is used for parsing various HTTP-like messages, SIP and RTSP.
RTSP and SIP-specific routines are added above this layer. In particular, the RTSP transaction
layer maintains the state for a media session, while the SIP transaction and client branch layers
maintain the state for a SIP transaction. The SIP transaction layer is used in implementing the
SIP proxy server. SIP user agent library uses the transaction layer, and implements the call control
state machine above that. Both internal and external libraries are used to build various applications
as shown in Fig. 22.

The CINEMA libraries are briefly described below:

libcine: libcine is a generic library with general-purpose utility functions for parsing HTTP mes-
sages, manipulating URIs, logging requests, MD5 functions, database access, software license

41

LDAP
Xerces−C

OpenH323
PWLib

ViaVoice
Xerces−C

Win32
stub

Utilities
parsing
IPv6

Basic
SIP
library

RTSP
client

SIP UA
library

RTP
library

RTP
audio
mixer

Hash
table

MySQL
interface

SIP
MIB

MySQL
Resparse

RTSP media
server

SIP proxy
server

SIP/H.323
gateway

SIP/RTP
conferencing

SIP/RTSP
unified messaging

SIP/VoiceXML
browser

libNT libcine libsip librtsp libsip++ librtp libmixer libdict libdb++ libsnmp

CINEMA applications

CINEMA libraries

Parsing, SIP, SDP, RTP, MySQL interface, SNMP interface, portability stubs, etc.

sipconf sipvxmlrtspd sipd sip323 sipum

Figure 22: Software library and applications

check, TCP/UDP wrapper, dynamic string, resolving host names, logging debug information.
This library is shared by both SIP and RTSP implementations.

libdict: libdict is a general-purpose library for dictionary or hash-tables in C.

libdb++: We use the MySQL database in our environment to store various user and system
configuration. This module is a high-level C++ interface for accessing the database tables
built as a wrapper over the libmysqlclient library. It also provides an in-memory database
mechanism to speedup database access. It also implements a file based authentication to
allow non-database type simple applications like user agent libraries.

libsip: libsip is a SIP library in C that implements the SIP transaction and client branch layers. It
allows different authentication mechanisms used by SIP. It also contains the SNMP interface
to libsipsnmp and the database interface to libdb++.

libsip++: libsip++ is a SIP user agent library that implements the call control for establishing,
maintaining and terminating a SIP call. It also has SDP parsing routines. It uses libsip for
implementation of transaction and client branch layers.

libmixer: libmixer is a RTP audio mixing library. It is used in the conferencing server implemen-
tation.

NT: NT library implements the basic portability stubs on the Microsoft Windows platform for
the commonly used Unix functions. In particular, it contains routines for aliases, crypt,
hashtable, inet, regex, getopt, and pthread. These stubs allow us to use the same code
base for both the Unix and Windows platforms.

42

10.1 SIP library overview

A SIP transaction is identified by the Call-ID, To, From and CSeq SIP headers and the SIP request
URI. A transaction roughly corresponds to a request and all its responses plus their retransmissions.

A transaction can be of two types: proxy transaction and user agent transaction. A proxy
transaction is associated with a set of client branches. When the proxy receives a request from
an upstream client it creates the transaction object then forwards the request to the downstream
server(s) using client branches. The responses received by the client branches from the downstream
server(s) are forwarded to the upstream client. A user agent transaction can either receive a
request and terminate it or can originate a request and wait for responses. Thus, the user agent
transaction can be further classified into incoming transaction (without any client branch) and
outgoing transaction (with only one client branch). Contrast this with the proxy transaction
which can have one or more client branches. More than one client branches signify the forking
proxy behavior. A forking proxy forwards a call to several possible locations simultaneously and
completes the call setup by connecting the caller to the first location answering the call. A client
branch represents a possible location where the destination can be reached.

Once a request is received it can be processed in a variety of different ways: proxy it (proxy
transaction), send a redirect response, inform the user (user agent transaction), or reject it. The
decision to choose appropriate behaviour can be governed by different policies as shown in Fig. 23.

The rest of this section assumes familiarity with the SIP specification.

10.2 SIP transaction and client branches

A SIP transaction is implemented as a request t structure (Fig. 24. It contains the following
pieces of information.

• time received stores the time when the first request (not the retransmissions) in this trans-
action was received.

• The actual incoming message is parsed and stored in parser t p. The message body is part
of the request body field. source sin stores the IP address and the port number of the
remote upstream client that sent the request.

• socket is the socket identifier to be used for sending responses upstream for this transaction.
type represents whether TCP, UDP or TLS is being used for this transaction for communi-
cation with the upstream client. The IP address and port number of the upstream client to
which the response has to be sent are stored in sin.

• The last response sent to the upstream client is stored in the status and reason fields. The
actual response, i.e., the headers and the response body are also stored in this transaction
object.

• Authentication information, challenge and credentials, are stored in the authorization and
authenticate fields, respectively.

• The server field is an opaque object pointing to the higher-level construct to which this
transaction object belongs. For example, it could point to the user agent object which started
the listening UDP and TCP threads. All transactions created as a result of messages received
from these instances of the listening threads correspond to this user agent object. This allows
for implementing multiple user agent objects, say one on port 5060 and another on 5070.

A call pointer is also an opaque pointer used only for a user agent transaction, to associate
it with the higher level call control objects.

43

Proxy

Redirect

UA
outgoing

UA
incoming

C1

C2

C1

Upstream clients

Alice

Alice

Alice

bob

bwilson

Bob

(2)

(2)

(3)bwilson@H2

(3) bob@H1

(4) 200 OK
(5)

(6)

(7) CANCEL

(1) INVITE Bob

(8) 200 OK

H1

H2

H3

(1) INVITE Bob

User Agent API

User Agent API

(1)(6)

(1) INVITE user
(3)

(4) 200 OK

(2)

(2)

(5) (4) 200 OK

(3) Bob@H3

(2) 302 moved

SIP library transactions and client branches

Proxy transaction (forking)

Redirect transaction

Outgoing user−agent transaction

Incoming user−agent transaction

Downstream servers

object

C

Transaction object

Client branch object

Figure 23: SIP transaction and client branches

• Some of the more frequently used SIP message headers are extracted and stored as version,
cseq, callID, to, from, expires, contact and user agent. via stores the top-most Via
header in the SIP request.

44

struct request_t {

/* Basic request information */

double time_received; /* time request was received */

/* Where is the response going to? */

int type; /* SOCK_DGRAM, SOCK_STREAM, SOCK_TLS */

int socket; /* socket id for response */

struct sockaddr_storage source_sin; /* socket address request came from */

struct sockaddr_storage sin; /* socket address for response */

/* we are not using type == SOCK_TLS because most of the code is written as if (type == SOCK_DGRAM) else ... making the

* type multiple valued, may cause subtle breaks somewhere. */

void *ssl_data; /* a pointer to SSL specific data or NULL, identifies a connection specific structure for ssl*/

/* Information about the request */

parser_t p; /* header for this request */

body_t request_body; /* The body of the request; */

http_authorization_t authorization; /* Authorization header */

/* Information about the response */

int status;

char *reason;

headers_t headers; /* Headers of response */

body_t response_body; /* Body to send with respnse */

void *server; /* server object associated with this request */

char *version; /* request version */

/* SIP request headers */

sip_cseq_t cseq; /* sequence number of request */

char *callID; /* the call ID of the request */

sip_addr_t to, from; /* addresses */

sip_via_t via; /* top-most Via header */

time_t expires; /* Expires header */

sip_contact_t *contact; /* SIP Contact headers */

char *user_agent; /* SIP User-Agent */

unsigned long hash; /* Hash of identifying headers */

int in_request_list; /* Is this added to request list? */

int acked; /* request has been ACKed */

/* SIP-specific Information about the response .*/

http_authenticate_t authenticate; /* SIP WWW-Authenticate (response) */

/* Transaction state: */

/* Locking. */

pthread_cond_t cond; /* condition variable */

pthread_mutex_t mutex; /* mutex for access */

/* User information. Used when necessary. */

put_table_entry *source_user; /* The originator of the transaction */

put_table_entry *destination_user; /* The (logical) destination of the transaction */

/* the canonicalized request uri. check the status flag before accessing the unique pointer for the canonicalized uri. */

canon_result canonicalized_uri;

char *method; /* For requests, the SIP method */

/* Communication with subsequent requests and responses */

message_t *mqueue; /* Message queue for this transaction */

int sent_final; /* Whether we’ve sent a final response to the original request */

int sent_200; /* Whether we’ve sent a 200 response to to the original request. */

/* State for the policy core */

int done; /* Whether the policy handler is done with this transaction. */

struct timespec final_timeout; /* Final timeout for the transaction */

/* Transaction & user policies */

struct transaction_policy_t *transaction_policy; /* Low-level policy to use for this transaction */

struct timespec transaction_policy_timeout; /* Transaction policy timeout, or 0 */

void *transaction_policy_info; /* Info specific to a transaction policy */

int transaction_policy_done; /* Whether the transaction policy is done with this transaction. */

struct user_policy_t *user_policy; /* High-level policy to use for this transaction. May be NULL. */

struct timespec user_policy_timeout;/* User policy timeout, or 0 */

void *user_policy_info; /* Info specific to a user policy */

int user_policy_done; /* Whether the user policy is done with this transaction. */

/* clients (proxy branches) */

branch_t *branches;

int branch_count; /* no of parallel searches (branches) */

int branch_space; /* number of branch_t’s allocated */

int branches_outstanding; /* current branches awaiting responses */

void *call; /* call object associated with request*/

struct sockaddr_storage remote_sin; /* needed for user agent in libsip++ */

uri_t outbound_proxy; /* Address of the outbound proxy if any */

int preferred_type; /* SOCK_DGRAM, SOCK_STREAM, SOCK_TLS or 0 as a preferred socket type

for outgoing request, typically used by a user agent */

struct request_t *next; /* next request in queue */

};

Figure 24: request t: transaction object

45

• Every time a message is received, the important fields (i.e., Call-ID, From, To, RequestURI
and CSeq) are compared against all the existing transactions. To speedup the search, a hash
of identifying headers is defined and kept in the transaction object. The search is further
optimized by storing a hash-table of existing transactions instead of a linked-list.

• Whether an ACK is received from the upstream client or not (for a proxy transaction) is
defined the boolean field, acked. For a user agent transaction it represents the status of
whether ACK has been sent (outgoing transaction) or received (incoming transaction).

• Various inter-thread synchronization constructs, like mutexes and conditions are also part
of the transaction object. Any thread which is manipulating this object should acquire the
object’s mutex before doing so. Also, a message queue, mqueue, is defined as part of request t
to allow inter-thread communication.

• sent final indicates whether the state machine has sent a final response to the original
request or not. Similarly, sent 200 tells whether it has sent a 2xx-class final response to the
original request or not.

• The boolean variable done indicates whether the policy handler is done with this transac-
tion or not. A policy defines the behavior of the transaction object on receipt of a new
request or response or on timeout. The policy specific information such as state, is stored in
policy info.

• A transaction can have zero or more client branches. A client branch represents an outgoing
message to the downstream server. Multiple client branches signify multiple parallel searches.
The branch count gives the number of client branches actually present whereas branch space
stores the number of branches allocated. Usually branch space is more that branch count to
reduce frequent memory allocation overhead. branches outstanding represents the current
number of branches awaiting response from the downstream servers.

• outbound proxy is the address of the outbound proxy server if any for the user agent trans-
action. The outbound proxy is the one to which all the requests are sent regardless of the
actual request URI.

• preferred type describes the preferred transport type: UDP, TCP or TLS for an outgoing
user agent transaction. Note that the preferred type value may be different from the actual
type of the transport protocol used.

• Finally, the next element allows a linked-list of transaction objects. Currently a list of active
transactions is maintained in the library.

A client branch (branch t structure shown in Fig. 25) has its own state machine to send the
request to the downstream server and collect all the responses. It also handles the timeouts and
other error conditions (e.g., socket send error).

• Every branch is given an integer identifier, branch, which is an index in the branch array of
the associated transaction. This id is also used in the Via header of the SIP requests sent to
the downstream server.

• The parent field points to the associated transaction object of type request t.

• The inter-thread communication is done using a message queue, mlist. The client branch
uses the mutex lock of the associate transaction object for inter-thread synchronization.
When a response is received from the downstream server, the response thread signals the

46

typedef struct branch_t {
int branch; /* branch index; -1 if none */
struct request_t *parent; /* parent request */
pthread_t tid; /* thread id for branch */
uri_t uri; /* URI to try */

struct message_t *orig; /* Original request for this branch */
struct message_t *mlist; /* Message queue for this branch */
int sent_200; /* Have we sent a 200 response to parent? */
int sent_final; /* Have we sent a final response to parent? */

pthread_cond_t response_received; /* alert to messages on the queue */

int marked_done; /* has the parent noticed that we finished? */
int shutdown; /* Have we shut down our state machine? */

int sent_something; /* do we have something interesting to
* wake the parent up about? */

void *user_policy_info; /* User-policy-specific info for the branch */
void *transaction_policy_info; /* Transaction-policy-specific info for the

* branch */

} branch_t;

Figure 25: branch t: client branch

response received condition variable of the client branch. The client branch can then pro-
cess the response message from its message queue. marked done is a boolean variable that
is used to tell the client branch state machine whether the parent transaction object’s state
machine has noticed the completion of the client branch state machine. If the client branch
terminates and releases memory before the parent transaction object is notified, then it may
lead to illegal memory access problems. This is why we need the marked done variable. The
shutdown boolean variable asks the client branch state machine to terminate itself. This is
signalled by the transaction state machine.

• sent 200 and sent final have the same meaning as that in the transaction object. sent final
indicates whether the state machine has sent a final response to the parent transaction object.
Similarly, sent 200 tells whether it has sent a 2xx-class final response to parent transaction
object.

• The original SIP request for this branch is stored in orig.

• The URI of the downstream server (which was obtained either from the database lookup in
a proxy transaction or supplied by the application in an outgoing user agent transaction) is
stored in the uri field.

10.3 Receiving messages

Fig. 26 shows what happens when a message is received. The tcp and udp sub-modules (as part of
the libcine library) take care of starting the threads to listen for incoming messages as shown in

47

udp.c

tcp.c

request
process

Request

Response

Transaction exists

transaction thread

transaction thread

transaction thread

Message Parsing

List of transactions

Retransmission (retransmit the last response)

Create new transaction

Post the message to the transaction thread

Transaction already exists

New request

Figure 26: Handling an incoming message

Fig. 27 and 28. When a message is received it is parsed into a parser t structure and a transaction
object is created out of it.

ReceiveTCP -- a thread
{

Create and bind a TCP socket at port 5060
While true -- infinite loop
{

Wait for incoming connection.
Invoke ReceiveTCPRequests thread
on incoming connection.

}
}
ReceiveTCPRequests -- a thread
{

Receive and parse the incoming message using HTTP_Parse().
Create a transaction object, request_t.
Invoke RequestProcess() on this object.

}

Figure 27: tcp.c: TCP receive thread

The transaction object is different for different protocols, SIP and RTSP. The multiplexing is
done in the header files. Basically, the fields needed by both SIP and RTSP are put in the common

48

ReceiveUDP -- a thread
{

Create and bind an UDP socket at port 5060
While true -- infinite loop
{

Wait for incoming UDP message.
Parse the incoming message using HTTP_Parse().
Create a transaction object, request_t.
Invoke RequestProcess() on this object.

}
}

Figure 28: udp.c: UDP receive thread

file (request-common.h) that is shared by the transaction objects for both SIP (request-sip.h)
and RTSP (request-rtsp.h).

Once the transaction object is created, the RequestProcess function is invoked to process the
appropriate message. It invokes either RequestProcessThread or ResponseProcessThread based
on whether the message is a request or response.

The library maintains a list of currently active transactions. If the received message is a re-
sponse, then ResponseProcessThread searches for the corresponding transaction objects from the
list and forwards the response to that transaction object. To be more precise, it forwards the
response to the transaction’s client branch associated with that request. Since the client branch
id is also sent in the Via header to the downstream servers and the response from the downstream
servers contains the same Via header and the branch id, any response can be readily mapped to
the appropriate client branch. It is up to the client branch state machine to handle the response
as appropriate. If no corresponding transaction object is found in the list, then the response is
ignored.

If the received message is a request, then the RequestProcessThread function does the following
things.

ValidateIncomingRequest: check the validity of the request. This includes checking for the pres-
ence of the SIP method, protocol, version, supported URI (“sip” and “tel”), and mandatory
headers like From, To, Call-ID and CSeq. If the validation fails, then an appropriate failure
response is sent to the upstream client. The library support only “sip” and “tel” URIs. Also
if the Require or Proxy-Require (depending on whether the request has to be handled locally
or not; for example for a proxy and registrar server REGISTER is handled locally but INVITE
is not) header is present and is not supported, then the appropriate failure response is sent.

RequestIsNotLooped: Check if this request has been looped. If our proxy name appears in its
Via headers, and the hash part of that Via header’s branch-id corresponds to this transaction’s
hash then it means that the request was sent by this proxy and came back to itself. If a loop
is detected then the appropriate failure response is sent back to the upstream client.

RequestSearch: The library maintains a list of currently available transaction objects. Whenever
a new request is received, it looks up into the available transactions list for a match. If it
belongs to the existing transaction the request is forwarded to the state machine of that
transaction, otherwise a new transaction state machine is entered. The search is done by
comparing the request URI, From, To, CallID and CSeq fields. The request hash is used to
speed up the search.

49

HandleDuplicateRequest: If the request belongs to an existing transaction, then HandleDuplicateRequest
explores various possibilities as shown below:

If top Via of this request does match the original request
We have request merging.
Send 482 unless the request is ACK, since there is no response for ACK.

If the request is ACK
If we have already sent 2xx response
This request is probably being handled by the proxy server’s policy
and has already sent 200. So this ACK needs to be handled end-to-end.
Hand it off to the proxy server’s policy or state machine.

Otherwise
Our state machine is currently retransmitting the final responses.
Set the appropriate flag (acked) so the retransmission stops.

If the request is CANCEL
Forward the message to the appropriate transaction state machine.
The 200 response to CANCEL is sent no matter what happens in the
transaction state machine.

If the request is something else say
BYE, INVITE, OPTIONS, REGISTER.
This is probably a retransmission.
Send back the previous final response and clean up this request.

HandleNewRequest: If no matching transaction is found, then HandleNewRequest does the
following things:

If the request is ACK
ACK is for unknown transaction
Ignore it for proxy. (Not for user agent)

If the request is CANCEL
Respond with 481 Call leg does not exist

For all other requests
Invoke the application (proxy, user agent) specific processing

SIP_OnIncomingRequest().

Note that a proxy transaction can ignore the ACK if it does not match an existing transaction
but for an user agent transaction it is not always possible. The ACK might have been sent
end-to-end, in which case the request URI is different from the original request. So one has
to compare again the incoming message with the available requests using only Call-ID, CSeq,
From and To, and not using the request URI.

The application specific processing of any new request is done in the SIP OnIncomingRequest
function. For example, a SIP proxy and registrar server will handle REGISTER requests
differently from all the other requests. The REGISTER request requires updating the local
database to update the contacts whereas other requests are proxied (or redirected) based

50

on the contact locations in the database for the user. Our proxy server, sipd, has a built-
in presence server that handles REGISTER and SUBSCRIBE differently from all the other
requests as shown in Fig. 29.

Try Stateless

Invoke policy

Canonicalize URI

not ACK

Check telephone,

.

Unique
user

"sip" or

Yes

No

Yes

No

Others (INVITE, BYE)

Incoming new request in sipd

Unsupported URI scheme

Route the request using "Route" header

domain
Foreign

302 use another registrar
485 Ambiguous

users
Multiple

Processing complete

method allowed,
authenticate

"tel" URI ?

"Route" header?

No No

No Failed

Failed No

REGISTER

allowed to

Yes

register?

Can source register
for user (third party)?

Yes

Authenticate

Success

Find existing contacts,
update contacts

Presence notification

Respond with current
contacts and script

allowed to

Yes

Authenticate

Success

Correct event type?

Yes

Update subscription

SUBSCRIBE

subscribe?

Figure 29: Incoming request in sipd

Functions like SetEarlyRequestData and SetLateRequestData are used to populate the trans-
action object fields with the appropriate values from the parsed incoming message.

10.4 Incoming registration

Fig. 29 shows processing of an incoming REGISTER method in sipd. If the user is not allowed
to register, then the request is rejected. If the source address and the destination address are
different, then it is a third-party registration scenario. If the source is not allowed to register for
the destination, then the request is rejected. The request is then authenticated using the digest
authentication. The server updates the contact locations in the database based on the new request.
If a contact is expired, it is removed. If the REGISTER message explicitly sets the Expires header as
0, then also the contact(s) are removed. If any user has subscribed to receive the presence event for
the registering user, then corresponding NOTIFY request is sent to that subscribed user. The server

51

then responds back with a successful response containing the existing contacts and programmable
script (SIP-CGI), if any.

10.5 Policy architecture

The SIP library provides a very easy-to-use architecture to plug in various independent components
in a generic architecture. This includes the proxy server, user agent, redirect server and presence
server. Note that the policy is used to define the behavior of the transaction state machine. It may
not always be used. For example, a SIP server may not assign a policy to incoming REGISTER
requests, but may assign proxy or redirect policy for all other requests. The decision as to which
policy to use for a particular request depends on the type of the application (proxy server or user
agent), and/or user preference (user may have configured the server to use redirect mode instead
of proxy mode).

A policy can be started using execute policy function call.

void execute_policy(request_t *r, policy_info_t *reg, int reg_status)

The transaction object, request t, is passed as the first parameter. The second parameter is
specific to the particular policy. It typically stores the input needed for taking further action, e.g.,
the available registration contacts for the user in case of proxy policy so that the state machine can
proxy the request to those contact locations. The third parameter is the SIP status code to start
the policy with. A status code of 200 means everything is fine. In some cases, the policy is started
with a non-200 status. For example, a failure policy may be started with status “404 Not Found”.

The life cycle of a transaction or a policy is shown in Fig. 30. The processing handlers, init,

Request Response Timeout

Cleanup

Init

Event
Loop

Message Queue

policy done

Transaction object
Registered locations
Initial status

Input:

error

done

Figure 30: Life cycle of a policy

request, response, timeout and cleanup, are defined by the specific implementation of a policy.
The execute policy function implements the overall state machine for the transaction. It does

not terminate until the transaction object is destroyed. After the function exits, the transaction
object is no longer valid and must not be referenced. Since the calling thread may remain inside

52

this function for long time, it is recommended to use a separate thread to invoke this function if
one does not want to wait or block in the caller’s thread.

As mentioned earlier, the transaction object has a message queue for inter-thread synchroniza-
tion. Other modules (e.g., client branch state machine, or call control state machine) can send their
messages to this message queue. The execute policy thread is also called as the policy thread or
the transaction thread.

When a policy is created, the init function is called first. Then the thread waits on an event in
a loop. This event is signalled when something “interesting” happens like a message is sent to the
thread’s message queue or a timer expires. Depending on the type of the event, the appropriate
function, request, response or timeout, is called. These handlers should not block or wait while
processing the event or message. Typically, an handler function does some minimal processing,
updates state, sends message(s) to other modules or to remote and returns. After the function
completes, the thread again waits on the next event. In case of an error in processing of these
functions, or when the policy thread is done its work (signaled by setting a boolean variable done),
the cleanup function is called and the policy terminates.

We have implemented the following policies. Some of these are shown in Fig. 23.

Redirect (redirect) This is implemented by sipd. It returns a 300-class response to the upstream
client in the init stage and terminates immediately.

Proxy (proxy) This is implemented by sipd. It creates new client branches based on the registered
locations in the init stage. The subsequent requests are processed in the request stage whereas
the subsequent responses received from the client branches are processed in the response stage.
timeout stage is needed to indicate any timer expiry in proxying. For example, if the more
preferred contact (with higher q value) did not respond, then the lower priority contact
location needs to be used after a timeout.

Failure (failure) A failure policy simply responds back with the appropriate failure response 4xx-
6xx in the init stage.

User Agent (user) This is implemented in the libsip++ library. There are two possible types
of user transaction: outgoing and incoming. The outgoing transaction has client branches
similar to the proxy policy. The incoming transaction does not have a client branch.

10.6 Client branch - state machine

A client branch is similar to a UAC. Client branches are created when the transaction needs to
send a request to the remote UAS. The client branch logic takes care of receiving the responses,
performing retransmissions and handling timeouts. A single transaction object can have one or
more client branches (e.g., in the forking proxy behavior) or it can have no client branch. This
subsection describes the state machine for a single client branch.

Fig. 31 shows the state machine for the client branch. The state machine is based on the client
transaction state machine specified in SIP [12]. When a new client branch is created (in the Initial
state) it tries to find out the IP address to send the request to. If the location is not found, it
immediately sends back a “404 Not found” to the parent transaction object. If it is found, then it
sends the SIP request to that address and moves to the Retransmitting request state. In this state
it retransmits the request as per the SIP specification. Awaiting response state is reached when
it has received a provisional response in Retransmitting request state. The retransmission stops
only for INVITE request. For other messages the timeout of the retransmission is changed but the
retransmission continues. Various timers in different states are shown in Table 9. Events can be
responses (1xx-6xx) received from the downstream servers, timer expiry, cancellation or shutdown
of the branch by the transaction layer, or some other error. The client branch thread is always

53

event

request sent

Awaiting Cancel

Got cancel final

Initial

Retransmitting
Request

Awaiting Response

Sent Final

Retransmitting
Cancel

Response

1xx

1xx

1xx

Parent

2xx

Cancel

CANCEL, 487

Timeout

CANCEL,408

3xx−6xx

Parent, ACK?

2xx

Parent

404

Not foundFound

send

2xx−6xx for CANCEL

1xx−6xx 1xx−6xx

2xx

Parent

Timeout

Next retransmission ?

Yes/retransmitNo

Exit

Parent

1xx

Cancel
CANCEL, 487

1xx−CANCEL

Exit

Exit

3xx−6xx

Parent

3xx−6xx
Parent

Resolve destination ?

Input: client branch object
with destination URI

Figure 31: SIP client branch state machine

immediately terminated when a shutdown is sent by the transaction layer. On the other hand, the
cancellation of the branch calls for sending of the SIP CANCEL request to the downstream servers.
Most of the downstream responses are forwarded to the parent transaction thread, which inturn
may forward it to the upstream client. The client branch can send either a real response (e.g., when
the actual SIP response message is received from the downstream server) or a pseudo response (e.g.,
in case of a socket call failure to send the message, the client branch indicates a pseudo response of
“404” to the transaction state machine, which in turn formats the real response message and sends
it to the upstream UAC).

10.7 Stateful proxy

A stateful proxy is implemented using the proxy policy. This section describes the implementation
of this policy. Fig. 32 shows the state machine for the proxy transaction.

54

State description timer
Initial Initial state. As soon as the client branch is

started it transitions to retransmitting request
or awaiting responses state.

None.

Retransmitting
request

The system is retransmitting the original re-
quest to the downstream server.

Time to the next retransmis-
sion.

Awaiting
responses

It is awaiting a final response frm the down-
stream server.

If the request was an INVITE
then the timer is set to Expires
value or infinite if it is absent.
For any other request it is set
to Expires.

Sent final It has sent a final response to the upstream
server. It is probably waiting to be terminated
by the transaction layer.

Infinite timeout.

Retransmitting
cancel

The client branch was cancelled by the trans-
action layer. We are retransmitting the CAN-
CEL request to the downstream server.

Until next cancel retransmis-
sion.

Awaiting can-
cel response

We are waiting for a final response for the
CANCEL from the downstream server.

T2 (slow retransmit) or infi-
nite afterwords.

Got cancel fi-
nal

We got the final response for the CANCEL re-
quest. but the final response for the original
request was not received.

Infinite timeout.

Table 9: SIP Client Branch States

proxy init When the proxy policy is created, it starts one or more client branches based on the
preferences (or q value) of the different contact locations. Client branches for most preferred
location are created first. If there are some more locations (with lower preferences) that
are not yet tried, then the system goes into the sending request state. If there are no more
locations to try then it goes into the awaiting responses state. A timer is started here with a
default timeout of 30 seconds. Once the client branches are created, it is the reponsibility of
the client branches to send the request and handle all the retransmissions and timeouts.

proxy handle request The state machine can get either a CANCEL or an ACK request from the
upstream client for this transaction. If a CANCEL is received, then all the unfinished client
branches are cancelled and the system goes into the final wait state. An ACK is forwarded to
all the finished branches.

proxy handle response The transaction state machine can receive the responses from the client
branches. These responses can be the real SIP responses or pseudo responses (e.g., on socket
error while sending the message). Choosing the next state is tricky here. If the response was
a successful 2xx class response, then the system goes to the final wait state immediately and
all the other branches are cancelled. However if the response was some other final response
then the system needs to wait for the other client branches to finish. If no further client
branch response is expected, but there are some more locations that have not yet been tried
(i.e. the system is in sending request state), then the next preferred location(s) are tried by
creating one or more client branch(es). If there are no more pending responses from any client
branch and there is no more location to be tried, then the system selects the best response
from all the received final responses. In case of a single location proxy, there will be only
one response. But in case of a forking proxy there could be multiple responses. A 3xx-class

55

Initial

Create more client branches

No more locations

No more locations

CANCEL

Cancel unfinished branches

Cancel unfinished branches
Forward upstream

2xx

Cancel unfinished branches

CANCEL

No more clients
No more locations
Select best response

Timer expired

Terminate

2xx

Forward upstream, cancel unfinished branches

More locations
are present

Input:
transaction object
registered locations

Create client branches for highest q−value contacts

3xx−6xx, timeout

Has more locations ? Sending requests

Awaiting responses

Final wait

3xx−6xx, timeout

Forward upstream

Figure 32: Stateful proxy policy

response is better than 4xx, which in turn is better than 5xx. On the other hand a 6xx
response should cancel all the other pending branches, terminate the search and return that
failure response immediately to the upstream client.

In the final wait state the system waits for some time before exiting the policy thread (default
is 30 seconds). This waiting time is also explained in the SIP specification and is used so that
the state machine can respond to any retransmissions.

proxy timeout A timeout is handled differently in different states. In the sending request state,
a timeout causes creation of more client branches, if possible, or the termination of the
transaction due to the timeout. In the awaiting responses state, a timeout indicates that the
location could not be contacted, the transaction fails and goes to the final wait state. If the
system is already in the final wait state when the timer expires, the transaction is considered
to be terminated by signaling the boolean variable done, which in turn terminates the event
wait loop of the policy thread and cleans up the transaction object.

proxy cleanup All internal policy related structures are freed during cleanup.

Note that the transaction state machine waits in the final wait state for some time before the
transaction object is terminated or deleted. This feature is undesirable in the case of a stateless

56

proxy that is described next.

10.8 Stateless proxy

A stateless proxy requires that there is no state maintained per transaction by the system. A
stateless proxy is possible only for an UDP based signaling because the TCP by definition is
stateful. Also, a stateless proxy must not have any retransmission or request forking logic.

We have implemented a stateless proxy in sipd. How an incoming message is handled differently
in the stateless proxy is shown in Fig. 33. Compare this with Fig. 26. The decision whether to

udp.c

tcp.c

request
process

Request

Response

Transaction exists

transaction thread

transaction thread

Message Parsing

List of transactions

Retransmission (retransmit the last response)

Transaction already Exists

Create new transaction

Post the message to the transaction thread

New Request

Exit

Forward the response to second via

Does not exists

Can use stateless

Try stateless
Success

fails

fall through stateful

Figure 33: Stateless vs stateful proxy policy

proxy the request statelessly is done dynamically on a per-request basis. The stateless proxy mode
is choosen only when both the upstream and the downstream signaling is over UDP, and there
is only one contact location for the request URI (i.e., no request forking). If the stateless proxy
procedure fails, then the system uses the default stateful proxy procedure.

Since there must not be any state and the policy architecture is stateful, we cannot use the
existing policy architecture. The stateless proxy is layered parallel to the policy architecture (and
not above it). When a new request is received and the server decides to use the stateless proxy,
it forwards the request to the selected contact location and terminates the transaction object and
other associated thread(s). Similarly, when a response is received and no associated transaction is
found for the response then it is forwarded statelessly to the second Via header. The top Via is this
server’s address whereas the second Via is the address of the upstream client.

10.9 User agent library

A user agent library, libsip++, is built on top of the transaction and client branch architecture.
It is implemented as a policy called user. As mentioned earlier, there are two types of user agent
transactions: outgoing and incoming. The state machine for the outgoing transaction is similar

57

to the proxy policy except that it handles only one client branch. Incoming transaction’s state
machine is more simple as there is no client branch. The user agent library primarily focusses on
the following two things:

Call control: A SIP/SDP multimedia call signaling is implemented using the state machine shown
in Fig. 34. The library maintains a list of the active call objects (sipcall t). Every call object

IDLE

BYE

OUTGOING

ACTIVE

2xx

BYE

CANCEL

INVITE

INVITE

CANCEL

INVITE

INCOMING_ACK

INCOMING

3xx, 4xx,5xx,6xx,Timeout

401/407 (passwd exists)

2xx

ACK

re−INVITE

180

 4xx,5xx,6xx

 3xx

re−INVITE

Hangup

Initiate

OnCallRejected
Reject, Hangup

Redirect

OnIncomingCall

OnCallCancelled

Accept

OnRemoteSessionChanged

Reinvite, SetSelfSessionDescription

OnCallEstablished

OnHangup

Hangup

OnRinging

1xx−6xx: SIP response from transaction layer (remote)
METHOD: SIP request from transaction layer (remote)
Method: C++ API methods in the library

Event

Action
Notation:

Figure 34: call control state machine

is associated with a higher level C++ object (SIPCall) defined by the libsip++ API. The
state machine processing is implemented in C, but the API is in C++. The call thread has a
message queue, similar to the transaction thread’s message queue. Communication with the
C++ API functions or the transaction layer happens through this message queue. Whenever
an API function is called to alter call state (e.g., hangup or initiate a call), a message is
posted to the message queue. Similarly when the transaction layer has something interesting
(e.g., transaction cancelled by remote) to inform to the call control layer, it posts a message
to the message queue. The call thread invokes the appropriate C++ API call-back methods
to indicate something interesting to the application, e.g., a new incoming call. The state
machine handles the SIP INVITE, ACK and BYE methods.

Outgoing registration refresh: The user agent library can perform outgoing registrations to
the remote SIP registration servers like sipd. A single one time registration does not need any
state machine, but if one wants to implement an automatic registration refresh mechanism,

58

IDLE

OUTGOING(1)

ACTIVE

OUTGOING(2)

OUTGOING(3)

TERMINATING

Unregister

REGISTER

3xx−6xx

OnRegistrationFailed

REGISTER

Register

2xx

OnRegisterSuccess

Unregister

REGISTER
Unregister

CANCEL

Refresh

re−REGISTER

Register

re−REGISTER

2xx

401/407 (passwd exists)

401/407 (passwd exists)

Exit METHOD: sip message from transaction (remote)

Method: C++ API methods

1xx−6xx : message from transaction layer (remote)

Figure 35: Outgoing registration state machine

the state machine shown in Fig. 35 is useful. The state machine handles the outgoing SIP
REGISTER method for an user agent.

The user agent library also has functions for parsing the SDP message body. However the media
transport or encoding and decoding of the multimedia data is outside the scope of this library.

A similar state machine can be implemented for other SIP methods like SUBSCRIBE and NO-
TIFY. Most of the other methods (e.g., DO, MESSAGE and REFER) do not require any state
machine. We are working on abstracting the addition of a new method in the library so that it is
easier for a third party to plug-in a new implementation for any SIP message.

The user agent library is meant for implementation of user agent type of applications. This
may include, besides a traditional user agent, a conferencing server, an unified messaging system
and a signaling gateway. sipconf, sipum and sip-h323 are the examples of these applications in our
test-bed.

10.10 Thread synchronization

Multi-threading helps modularity. It is easier to implement a state machine as an independent
thread. For every transaction a new thread is created. Moreover every client branch has its own
thread. As an example, a simple proxy request to one location will generate two threads, one for
the transaction state machine and the other for the client branch state machine.

We use the POSIX thread (pthread) API. The mutex and condition variables are used for
synchronization. Typical pseudocode use of these constructs is shown in Fig. 36. Typically, every
transaction object has a mutex and a condition variable. If some thread wants to access the object,
then it must acquire the mutex lock before doing so. All the client branches associated with a

59

...
//event loop
pthread_mutex_lock(&r->mutex); // get the lock
while (1) {
//set timeout if applicable
e = pthread_cond_timedwait(&r->cond, &r->mutex, &timeout);
if (e = TIMEOUT) {
//process timeout

}
else {
//get message from message queue and process

}
}
pthread_mutex_unlock(&r->mutex); //release the lock

...
//singnaling code
pthread_mutex_lock(&r->mutex); //get the lock
//send some message to the message queue
pthread_cond_broadcast(&r->mutex); //signal the event.
pthread_mutex_unlock(&r->mutex); //release the lock
...

Figure 36: Example on mutex and condition variable

transaction use the mutex of that transaction object. The transaction event wait loop waits on the
condition variable of the transaction object. Any other thread that wants to signal the transaction
logic should signal this condition variable. For example, when a new message is received from
an upstream client, the message is forwarded to the transaction thread’s message queue and the
condition variable is signaled. Signaling the condition variable of the thread causes it to come out
of the event wait loop, and process the messages from its message queue. However, this happens
only when the thread acquires the transaction’s mutex lock.

A client branch also has a condition variable. This is used by the response thread to trigger
the event that a new response has been received from the downstream server. The client branch
signals the condition event of the associated transaction object when it wants to send some event
or message to the transaction thread.

The user agent library is implemented above the transaction layer. In particular, the call control
or registration refresh threads need to communicate with the transaction thread. Every call control
or registration refresh thread has a mutex for exclusive access, and a condition variable for signaling
events.

The list of currently active transaction object is maintained as a global hash-table, protected
by a global mutex, R lock. Similarly, the list of active calls and list of registrations are maintained
as global linked-lists.

A single thread may need more than one mutex lock. This might result in a deadlock. We
prevent any possible dead-lock by avoiding the circular wait condition. The various mutexes are
ordered in a partial-order as shown in Fig. 37. Any thread which needs to acquire the mutex with
a lower order should release all the higher ordered mutexes. For example, any thread which wants
to acquire the R lock mutex should first release any transaction object’s mutex because R lock is
ordered before any transaction object’s mutex. Similarly, a transaction object’s mutex is ordered
before the associated call control object’s mutex, so one must release any call mutex in the user
agent library, before trying to acquire the transaction object’s mutex. All other mutexes that do

60

R C

r c

R_lock for list of transaction objects C_lock for list of call objects

Per−transaction lock (r−>mutex) Per−call lock (c−>mutex)

Figure 37: Ordering of the mutexes to avoid dead-lock

not appear in Fig. 37 are independent of other mutexes.

10.11 Database lookup

SQL
database

SQL
database

Cache

Periodic
Refresh

< 1ms
10 ms (approx)

Interface
Web

External Database In−memory cache

Figure 38: SQL vs FastSQL

Database lookup for locating the contacts of the users constitues a substantial fraction of the
processing power in a SIP proxy server. Higher delay in database lookup (approximately 10 ms
per query) increases the response time/delay of the transaction, hence the performance and the
scalability. We have implemented an in-memory database scheme to speed-up the database access
time in our SIP server (sipd) as shown in Fig. 38. This involves loading the various database tables
(e.g., user information, contact locations, aliases) into the main memory, instead of doing lookup
into the database for every transaction. Since each table entry takes less than few hundreds of

61

bytes it is perfectly reasonable to use it in an enterprise environment with only a few thousands
of users for improved performance. However this optimization causes another problem related
to synchronization of the in-memory and external database. In particular, care must be taken
to updated the in-memory database when a new contact is added from the user interface. We
define a periodic refresh interval (About two minutes for contacts table and half an hours for user
information and aliases tables) to refresh the in-memory database. The contacts table is written
out to the external database from in-memory database periodically. We read only those entries that
are modified since last read and write only modified entries back to the database during refresh.

62

11 Related Work

Several companies, such as Net2Phone and MediaRing, provide PC-to-PC and PC-to-phone
calls. Their objective is mainly to provide low-cost call service to the PSTN from the public
Internet. We initially intended CINEMA to minimize telephone infrastructure and service costs for
an organization, but out architecture is well suited as an Internet telephony infrastructure within
an organization. We can configure CINEMA to carry calls between campuses or branch offices over
IP with virtually no added cost.

Several multimedia conferencing products use SIP or H.323 for signaling. These include Meet-
ingPoint from CUseeMe Networks 5, Sametime from Lotus6, and GnomeMeeting 7 from the Linux
community. Our system can provide services beyong standard video conferencing and can actually
incorporate these tools as long as they are standard-compliant.

There is a fair amount of early voice-messaging work, in particular, Xeroz PARC’s Etherphone,
but none of it addresses the integration of Internet telephony with voice messaging systems. Several
vendors offer SIP proxy servers and user agents that we can use in the CINEMA infrastructure as
well. The SIP standard simplifies integration among different vendors’ products. The CINEMA
architecture facilitates such integration with readily available features; new components can be
added as needed.

5www.cuseeme.com
6www.lotus.com/home.nsf/welcome/sametime
7www.gnomemeeting.org

63

12 Conclusions and Future Work

We have described the architecture of our Internet telephony installation consisting of the SIP
server, SIP-PSTN gateway, RTSP media server, unified messaging server, conferencing server and
SIP-H.323 translator.

The test-bed is initially intended for small scale experiments within the department and later
to be extended to a campus-wide Internet telephony environment. A similar architecture can be
deployed at other campus and organization networks who want to benefit from the services provided
by Internet telephony, in particular SIP.

We will continue with integration of additional services. For example, SIP-based instant messag-
ing and presence will allow a standard way to send instant messages and form buddy lists [24, 25].
Combining presence and Internet telephony offers improved services, reducing, for example, the
number of failed call attempts or involuntary redirects to voice mail.

We have implemented device control using the SIP method DO in our user agent, sipc.
We are implemementing a VoiceXML [40] browser that allows us to easily implement services

such as retrieving email, including voicemail, via traditional phones, but also simplifies the task
of building voice menus, making such services available to small organizations. (VoiceXML is an
XML DTD that mimics HTML forms input via DTMF or speech recognition.)

We are currently instrumenting our proxy and conference server to better understand how to
build highly scalable systems. The performance evaluation of SIP servers is more difficult than
that of, say, web servers since finding the maximum operating rate is complicated by SIP’s use
of UDP, causing packet loss and retransmissions under overload. Also, the workload is likely to
differ dramatically between registration-bound mobility service and script-processing-bound service
engines.

A commercial deployment involves many other issues related to security, billing and quality
of service. Interworking with the corporate firewalls and Network Address Translators (NATs) is
another challenge. We are also planning developing a Windows CE version of our SIP UA, making
it possible to integrate wireless PDAs into the infrastructure.

Finally, a short-term goal is to deploy the system throughout the Computer Science department
and then be able to replace our PBX. In the long term, we will provide direct SIP services for
integrated access, and address quality of service issues.

64

13 Acknowledgments

We would like to thank Enlai Chu of Cisco, Keane Chin of SIP Communications Inc., and
Sarmistha Dutta of Columbia University for their help with the Cisco gateway and departmental
PBX. Xiaotao Wu implemented sipc. Tarun Kapoor installed the MySQL database. Xu Li added
the ENUM support to sipd. Huwei Zhang implemented conference load balancing and file sharing.
Timo Ohtonen incorporated IPv6 support. Michael Castleman implemented the anonymizer. Li
Liao helped in TLS configuration. Anshul Kundaje added RADIUS accounting to sipd. Ali Khwaja
worked on G.722 support and quality improvement in sipconf.

This work was supported by equipment and research grants from 3Com, Cisco, Clarent Com-
munications, Lucent, Pingtel, SIPcomm, and Sylantro.

65

14 Glossary

AAA Authentication, Authorization and Accounting
ACD Automatic Call Distribution
ACL Access Control List
AMI Alternate Mark Inversion
API Application Program Interface
B2BUA Back-to-Back User Agent
B8ZS Bipolar 8 with Zero Substitution
CAS Channel Associated Signaling
CCS Common Channel Signaling
CDP Coordinated Dialing Plan
CGI Common Gateway Interface
CINEMA Columbia InterNet Extensible Multimedia Architecture
CPL Call Processing Language
DID Direct Inward Dialing
DNS Domain Name System (or Service or Server)
DSEL Data SELector
DTD (XML) Document Type Definition
DTMF Dual-Tone Multiple Frequency
ENUM Telephone Number Mapping
ESF Extended Super Frame
H.323 ITU-T recommendation for multimedia communication over packet based networks
HTTP Hyper-Text Transport Protocol
MD5 Message Digest version 5
IETF Internet Engineering Task Force
IOS (Cisco) Internetwork Operating System
IP Internet Protocol
IPv6 IP version 6
ISDN Integrated Services Digital Network
ISP Internet Service Provider
ITU-T International Telecommunications Union - Telecommunication standardization sector
IVR Interactive Voice Response
MIB Management Information Base
NAT Network Address Translator
NCOS Network Class Of Service
PBX Private Branch eXchange
PCM Pulse Code Modulation
POTS Plain Old Telephone Service (also PSTN)
PRI Primary Rate Interface
PSTN Public Switched Telephone Network
PUT Primary User Table
QoS Quality of Service
RADIUS Remote Authentication in Dial-In User Service

66

RTP Real-time Transport Protocol
RTSP Real Time Streaming Protocol
SDP Session Description Protocol
SF Super Frame
SIP Session Initiation Protocol
SNMP Simple Network Management Protocol
SRV (DNS) Service resource record
SQL Structured Query Language
T1-line A digital line with 24 channels each of 64 kb/s
TCP Transport Control Protocol
TLS Transport Layer Security
TRIP Telephony Routing over IP
UA User Agent
UAC User Agent Client
UAS User Agent Server
UDP User Datagram Protocol
URI Universal Resource Identifier
URL Universal Resource Locator
VoiceXML Voice eXtensible Markup Language
XML eXtensible Markup Language

67

References

[1] The SIP servlet API. http://www-uk.hpl.hp.com/people/sth/sip/servlet/.

[2] OpenSSL home page. http://www.openssl.org/.

[3] Net-SNMP home page. http://www.net-snmp.org/.

[4] B. Aboba, J. Arkko, and D. Harrington. Introduction to accounting management. RFC 2975,
Internet Engineering Task Force, Oct. 2000.

[5] J. Bellamy. Digital Telephony. John Wiley & Sons, New York, 1991.

[6] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser. Introduction to community-based
SNMPv2. RFC 1901, Internet Engineering Task Force, Jan. 1996.

[7] F. Dawson and D. Stenerson. Internet calendaring and scheduling core object specification
(icalendar). RFC 2445, Internet Engineering Task Force, Nov. 1998.

[8] T. Dierks and C. Allen. The TLS protocol version 1.0. RFC 2246, Internet Engineering Task
Force, Jan. 1999.

[9] P. Faltstrom. E.164 number and DNS. RFC 2916, Internet Engineering Task Force, Sept.
2000.

[10] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext transfer protocol – HTTP/1.1. RFC 2616, Internet Engineering Task Force, June
1999.

[11] M. Handley and V. Jacobson. SDP: session description protocol. RFC 2327, Internet Engi-
neering Task Force, Apr. 1998.

[12] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg. SIP: session initiation protocol.
RFC 2543, Internet Engineering Task Force, Mar. 1999.

[13] International Telecommunication Union. Packet based multimedia communication systems.
Recommendation H.323, Telecommunication Standardization Sector of ITU, Geneva, Switzer-
land, Feb. 1998.

[14] IRT Lab, Columbia University. E*phone home page.
http://www.cs.columbia.edu/˜hgs/ephone/.

[15] IRT Lab, Columbia University. sipc home page. http://www.cs.columbia.edu/IRT/software/sipc.

[16] A. Kristensen and A. Byttner. The SIP servlet API. Internet Draft, Internet Engineering Task
Force, Sept. 1999. Work in progress.

[17] J. Lennox and H. Schulzrinne. CPL: A language for user control of internet telephony services.
Internet Draft, Internet Engineering Task Force, Nov. 2001. Work in progress.

[18] J. Lennox, H. Schulzrinne, and J. Rosenberg. Common gateway interface for SIP. RFC 3050,
Internet Engineering Task Force, Jan. 2001.

[19] K. Lingle, J. Maeng, J. Mule, and D. Walker. Management information base for session
initiation protocol. Internet Draft, Internet Engineering Task Force, Feb. 2002. Work in
progress.

68

[20] MySQL AB Co. MySQL home page. http://www.mysql.com.

[21] S. Petrack and L. Conroy. The PINT service protocol: Extensions to SIP and SDP for IP
access to telephone call services. RFC 2848, Internet Engineering Task Force, June 2000.

[22] C. Rigney. RADIUS accounting. RFC 2866, Internet Engineering Task Force, June 2000.

[23] C. Rigney, S. Willens, A. Rubens, and W. Simpson. Remote authentication dial in user service
(RADIUS). RFC 2865, Internet Engineering Task Force, June 2000.

[24] J. Rosenberg et al. SIP extensions for instant messaging. Internet Draft, Internet Engineering
Task Force, July 2001. Work in progress.

[25] J. Rosenberg et al. Session initiation protocol (SIP) extensions for presence. Internet Draft,
Internet Engineering Task Force, Apr. 2002. Work in progress.

[26] J. Rosenberg, J. Lennox, and H. Schulzrinne. Programming Internet telephony services. IEEE
Network, 13(3):42–49, May/June 1999.

[27] J. Rosenberg and H. Schulzrinne. A framework for telephony routing over IP. RFC 2871,
Internet Engineering Task Force, June 2000.

[28] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley,
and E. Schooler. SIP: session initiation protocol. Request for comment, Internet Engineering
Task Force, May 2002. RFC 3261.

[29] J. Rosenberg, D. Willis, R. Sparks, B. Campbell, H. Schulzrinne, J. Lennox, C. Huitema,
B. Aboba, D. Gurle, and D. Oran. SIP extensions for instant messaging. Internet Draft,
Internet Engineering Task Force, Feb. 2001. Work in progress.

[30] H. Schulzrinne. SIP authentication: The null authentication scheme. Internet Draft, Internet
Engineering Task Force, Sept. 2000. Work in progress.

[31] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: a transport protocol for
real-time applications. RFC 1889, Internet Engineering Task Force, Jan. 1996.

[32] H. Schulzrinne, A. Kundaje, and S. Narayanan. RADIUS accounting for SIP servers. Internet
Draft, Internet Engineering Task Force, July 2002. Work in progress.

[33] H. Schulzrinne, A. Rao, and R. Lanphier. Real time streaming protocol (RTSP). RFC 2326,
Internet Engineering Task Force, Apr. 1998.

[34] H. Schulzrinne and J. Rosenberg. Internet telephony: Architecture and protocols – an IETF
perspective. Computer Networks and ISDN Systems, 31(3):237–255, Feb. 1999.

[35] H. Schulzrinne and J. Rosenberg. SIP caller preferences and callee capabilities. Internet Draft,
Internet Engineering Task Force, Nov. 2001. Work in progress.

[36] K. Singh, G. Nair, and H. Schulzrinne. Centralized conferencing using SIP. In Internet
Telephony Workshop 2001, New York, Apr. 2001.

[37] K. Singh and H. Schulzrinne. Interworking between SIP/SDP and H.323. In Proceedings of
the 1st IP-Telephony Workshop (IPtel 2000), Berlin, Germany, Apr. 2000.

[38] K. Singh and H. Schulzrinne. Unified messaging using SIP and RTSP. In IP Telecom Services
Workshop, pages 31–37, Atlanta, Georgia, Sept. 2000.

69

[39] A. Vaha-Sipila. URLs for telephone calls. RFC 2806, Internet Engineering Task Force, Apr.
2000.

[40] VoiceXML Forum. Voicexml home page. http://www.voicexml.org/.

70

A Our Installation

Fig. 39 shows the system installation in our department. The host names and IP addresses are
also shown.

Figure 39: Our installed system

A.1 System configuration

The database tables for cinema, sipd config and vmail are shown below. The userid and password for
SQL database is changed. The SQL URL for accessing the server is of the form sql://root:NULL@conductor.cs.co
for access from the local host (conductor).

cinema table

server_name cs.columbia.edu
mode local

71

realm cs.columbia.edu
administrator kns10@cs.olumbia.edu
http_server conductor.cs.columbia.edu
icon http://conductor.cs.columbia.edu/cinema/images/IRT_logo50.gif
banner Columbia InterNet Extensible Multimedia Architecture (CINEMA)
mail_relay ober.cs.columbia.edu
serverroot NULL
mailrelay ober.cs.columbia.edu
conffiledir /opt/cinema/conffile
sipdhost conductor.cs.columbia.edu
sipconfhost conductor.cs.columbia.edu
sipconfport 5072
sip323host conductor.cs.columbia.edu
sip323port 5074

sipd_config table

server_name cs.columbia.edu
proxy_name NULL
primary_ip NULL
port 5060
domain ((cs.columbia.edu)|(128.59.19.69))
server_root /opt/cinema/sipd
error_log stdout
log_format %h %u %t "%r" %s To=%{To}i \

From=%{From}i Call-ID=%{Call-ID}i %T
log_condition INVITE,REGISTER,ACK,BYE
group_name NULL
user NULL
pid_file logs/sipd.pid
canonicalize -d -n -u -D dialplan.sample
gateway_map gateways.sample
script_base scripts
auth_method digest
private_key 1
nonce_life_time 60
clock_skew 300
cgi_timeout 15
expires 3600
threadpool_size 128
foreign_domain proxy
default_reg proxy
display_ambigous false
help_resolve false
proxy_recursion false
third_party_reg false
start_snmp false
try_stateless false
record_route true
use_threadpool true

72

enum_root trial.e164.com
agentx_socket_path 127.0.0.1:5062
max_expires 86400
realm cs.columbia.edu
timeout 36
numeric_via true
host_name6 conductor.cs.ip6.columbia.edu
proxy_name6 NULL
primary_ip6 NULL
start_ssl true
use_namemapper true
require_userparam false

vmail table

server_name cs.columbia.edu
vmailuserdir /opt/cinema/vmusers
vmailhost conductor.cs.columbia.edu
vmailport 5070
rtsphost conductor.cs.columbia.edu
rtspport 8554
randomdigits 6
vmailquota_kb 2000

A.2 Cisco 2600 (gateway) configuration

The configuration (show run) for the Cisco 2600 gateway is shown below.

Current configuration : 2645 bytes
!
version 12.1
service config
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname itgw1
!
no logging buffered
no logging buffered
logging rate-limit console 10 except errors
Following two lines have been changed.
enable secret 5 1N3uKF4uJ.5lXdJahsUf/Ya8sK.
enable password mypass
!
!
!
clock timezone GMT 0
voice-card 1
!

73

ip subnet-zero
!
!
no ip finger
ip ftp username wenyu
ip domain-list cs.columbia.edu
no ip domain-lookup
ip domain-name cs.columbia.edu
ip name-server 128.59.16.20
ip name-server 128.59.16.9
!
no mgcp timer receive-rtcp
call rsvp-sync
!
voice class codec 1
codec preference 2 g711ulaw

!
!
!
!
!
!
!
controller T1 1/0 # T1 parameters
framing esf
linecode b8zs
ds0-group 1 timeslots 1-4 type e&m-wink-start # only 4 out of 24 channels allocated
description line

!
!
interface Tunnel1
no ip address

!
interface FastEthernet0/0
ip address 128.59.19.28 255.255.248.0 # IP addr and netmask
ip access-group 101 in # usage of IOS ACL number 101
no ip mroute-cache
speed auto
half-duplex
no cdp enable

!
ip default-gateway 128.59.16.1 # routing purpose
ip classless
ip route 0.0.0.0 0.0.0.0 FastEthernet0/0 128.59.16.1 2 # routing purpose
no ip http server
!
access-list 101 permit ip host 128.59.19.141 any # permit all traffic from/to sipd
access-list 101 permit ip 63.70.87.96 0.0.0.31 any # SIP Comm machines
access-list 101 permit udp host 128.59.16.20 range domain 54 any # DNS traffic
access-list 101 permit udp 128.59.16.0 0.0.7.255 range biff 65535 host 128.59.19.28 neq 5060

74

access-list 101 permit ip host 156.111.237.127 any
no cdp run
route-map map permit 10
set ip default next-hop 128.59.16.1

!
snmp-server engineID local 0000000902000002FD40E640
snmp-server community public RO
snmp-server packetsize 4096
!
voice-port 1/0:1
!
dial-peer cor custom
!
!
!
dial-peer voice 1005 pots
preference 6
destination-pattern 8....... # outgoing local call
no digit-strip
port 1/0:1

!
dial-peer voice 1010 pots
preference 7
destination-pattern 4.... # outgoing campus call
no digit-strip
port 1/0:1

!
dial-peer voice 1020 pots
preference 8
destination-pattern 81.......... # outgoing long-distance call
no digit-strip
port 1/0:1

!
dial-peer voice 1003 pots
preference 4
destination-pattern 8... # outgoing service call (such as 411)
no digit-strip
port 1/0:1

!
dial-peer voice 3 voip
destination-pattern 1.. # 3-digit extensions for non-DID call, to be verified
voice-class codec 1
session protocol sipv2
session target ipv4:128.59.19.141

!
dial-peer voice 2 pots
application session.t.old
destination-pattern 7138\$ # non-DID incoming call leg, to be verified
no digit-strip
port 1/0:1

75

!
dial-peer voice 1 voip
preference 1
destination-pattern 713[0-79] # DID incoming call range
voice-class codec 1 # u-law coding, defined earlier
session protocol sipv2
session target ipv4:128.59.19.141 # sipd’s IP address

!
dial-peer voice 1000 pots
preference 3
destination-pattern ((70..)|(71[0-24-9].)) # IP to PBX internal call
no digit-strip
port 1/0:1

!
!
line con 0
exec-timeout 0 0
transport input none

line aux 0
line vty 0 4
password remote8
login

!
end

Cisco IOS commands for setting up a PRI T1 connection with the PBX are shown below. Note
that we list only the differences with the channelized T1 case.

isdn switch-type primary-5ess # setting up the ISDN PRI switch type, here it is 5ESS

controller T1 1/0
framing esf
fdl ansi
linecode b8zs
pri-group timeslots 1-24 # this PRI line is a full T1 (24 DS-0

channels)

interface Serial1/0:23 # the last DS-0 channel is the D-channel for
signaling
isdn switch-type primary-5ess # ISDN PRI switch type for each individual

circuit

voice-port 1/0:23

dial-peer voice 1 voip # the dial-peer id is not important
...
progress_ind setup enable 3 # to force ring-back in PSTN-to-IP calls for

ISDN
dtmf-relay rtp-nte # DTMF relay by RTP, available in IOS 12.2

...

76

dial-peer voice 10 pots
...
direct-inward-dial # this option is needed if the PRI line sends

only DNIS (Dialed Number) digits instead of
actually dialing the digits

port 1/0:23
...

On a freshly booted Cisco router, if first-time setup does not get saved properly to flash memory,
check its configure register by “show version” command:

Configuration register is 0x2102 # this is the right value; 0xA102 is the wrong one

If the register has the wrong value, change it by entering configure mode and type:

config-register 0x2102

A.3 PBX configurations

A.3.1 Layer 1: T1 Line cabling

First, we describe the cabling of the internal T1 line, because the connector types are not necessarily
the same between the PBX and the gateway.

The T1 card on the PBX is a Nortel AS-1074PRI card. It uses a cable with a male DB-15
connector. In contrast, the Cisco voice gateway has a female T1 RJ-48C port. The pin assignments
are listed in the following table. In this table, both the “network” and Telco is simply the other
(peer) entity with respect to itself.

PBX’s DB-15 Gateway’s RJ-48C
pin signal comment
1 T trasmit tip to network (net-

work is the peer entity)
9 R trasmit ring to network
2 FGND frame ground
3 T1 receive tip from network
11 R1 receive ring from network

pin signal T1 NIC ↔ Telco
1 R ←
2 T ←
4 R1 →
5 T1 →

Table 10: Comparison of T1 port pin assignments between the PBX and gateway

As a result, we need an adapter cable with the following pin assignments:
DB-15 pins RJ-48C pins

1 2
9 1
3 5
11 4

Therefore, we choose the BlackBox ETNM03-0005 (cross-pinning) unit. Because ETNM03-0005
has a male DB-15 connector, and the PBX’s T1 cable also has a male DB-15 end, a BlackBox FA455
DB-15 female to DB-15 female couple (gender changer) is also used. Because the cables are not
long enough, we use a RJ-48C female couple and a category-5 straight through cable to extend the
total cable length.

77

Attribute value
T1 line type DTI (Digital Trunk Interface), i.e.,

channelized T1.
Line coding B8ZS
T1 framing ESF (Extended Super Frame)
Trunk signaling
type

EM4 (E & M with 4-wire)

Trunk start sig-
naling

Wink signaling

Signaling tone
type

DTMF (Dual Tone Multiple-
Frequency)

Table 11: Summary of key attributes

A.3.2 Layer 2: Link Layer configuration

Next, we describe the key parameters in the internal T1 line in Table 11, most of which have been
discussed in Section 6.3

The following is a summarized printout of our PBX configuration, only the key parameters are
displayed. All underlined words are typed in by the PBX administrator.

LD 22 # LoaD the overlay program #22
REQ PRT # user REQuest (as the prompt) in PRinT
TYPE CFN # ConFiguratioN record data for the PBX
...
PCML MU # PCM law is µ-law
...
DLOP NUM DCH FRM TRSH # Digital trunk LOoP (i.e., like configurations)
TRK 003 24 D4 00 # T1 trunk to local phone company
004 24 ESF 00 # internal T1 trunk, using ESF framing
...

LD 16 # LoaD the overlay program #16
REQ PRT # user REQuest (as the prompt) in PRinT
TYPE RDB # Route Data Block (for routing call to the correct trunk)
CUST 0 # CUSTomer id (usually 0)
ROUT 2 # route number 2 for call routing
...
TKTP TIE # TrunK TyPe. Configure it as a TIE line (bidirectional)
...
DTRK YES # digital (as opposed to analog) trunk
DGTP DTI # DiGital trunk TyPe: DTI is Digital Trunking Interface (i.e., channelized T1)
DSEL VCE # Data SELector is VoiCE (i.e., voice-only trunk)
...
SRCH RRB # free channel SeaRCH method: Round-RoBin
...
TARG 01 # Trunk Access Restriction Group
...

LD 21

78

REQ LTM # List Trunk Members (individual channels in a trunk)
CUST 0
ROUT 2
TYPE TLS
TKTP TIE
ROUT 2
TN 004 01 MBER 1 # 4 out of 24 channels allocated
TN 004 02 MBER 2 # TN means terminal number (like a telephone slot)
TN 004 03 MBER 3
TN 004 04 MBER 4

LD 20
REQ PRT
TYPE TNB
TN 4 # list all Terminal Numbers with prefix 4
CUST
DATE
PAGE
DES
TN 004 01 # Terminal Number 4 1 (1st out of 4 allocated channel)
TYPE TIE
CUST 0
NCOS 7 # NCOS (Network Class Of Service) of 7,
... # usually means all calls allowed.

Higher value implies more privileges.
SIGL EM4 # E&M 4-wire trunk
STRI/STRO WNK WNK # wink start signaling
...

LD 87
REQ PRT
CUST 0
FEAT CDP # FEATure if Coordinated Dialing Plan
TYPE DSC # Distant Steering Code, which is the DID prefix in our case
DSC xxx
RLI xxx # Route List Index to be accessed for DSC

LD 86
REQ PRT
CUST 0
FEAT RLB # FEATure is Route List Information
RLI xxx
ROUT xxx
FRL xxx # Facility Restriction Level, usually same as NCOS
...

LD 60 # what to do if T1 line is on red-alarm after rebooting the gateway
STAT # shows current STATus of all trunks
DISL 4 # DISable Loop (trunk) number 4 (the internal T1 line)

79

ENNL 4 # enable it again, which reset the T1 alarm
STAT # double-check the trunks’ status

LD 14 # Modify Trunk Data Block
REQ NEW
TYPE TIE
...

Just type return by default
TN 4 5 # Adding a new terminal number
...
CUST 0
...
NCOS 7
RTMB 2 5 # RouTe MemBer (corresponds to an individual DS-0 channel),
... # Add 5th member for T1 trunk 2
TGAR 0 # Trunk Group Access Restriction, restricts this line if TGAR matches with TARG
SIGL EM4 # E&M 4-wire trunk
...
STRI WNK # Incoming calls: WiNK STart Signaling
STRO WNK # Outgoing calls: WiNK STart Signaling
CLS DTN # T1 needs tone-dialing instead of the default pulse-dialing,

CLS means service CLaSs and DTM stands for Digital ToNe dialing

After adding a DS-0 channel on the PBX, make sure to reflect the change in the voice gateway
as well using the ds0-group sub-command in the T1 controller command. For example, with 5
channels now, use the following:

ds0-group 1 timeslots 1-5 type e&m-wink-start

A.4 Database tables

This section describes the database tables we are using with an example of the default values.

mysql> desc put;
+------------------+------------------------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------------+------------------------------------+------+-----+---------+-------+
user	varchar(255)		PRI		
hash_value	varchar(255)				
realm	varchar(150)				
sip_groups	varchar(100)	YES		NULL	
auth	enum(’required’,’request’,’never’)	YES		NULL	
algorithm	varchar(20)				
sip_methods	varchar(100)	YES		NULL	
remote_user	text	YES		NULL	
busy	varchar(255)	YES		NULL	
noresponse	varchar(255)	YES		NULL	
message_template	text	YES		NULL	
um_timeout	smallint(5) unsigned	YES		NULL	
max_msgsize_kb	int(10) unsigned			200	

80

last_modified	timestamp(14)	YES		NULL	
gwclass	varchar(100)	YES		NULL	
email	text	YES		NULL	
+------------------+------------------------------------+------+-----+---------+-------+
16 rows in set (0.00 sec)

mysql> desc contacts;
+---------------+--------------------------+------+-----+---------------------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------+--------------------------+------+-----+---------------------+-------+
user	text		PRI		
contact	text		PRI		
expires	datetime	YES		9999-12-31 23:59:59	
q	float(10,2)	YES		NULL	
action	enum(’Proxy’,’Redirect’)	YES		NULL	
last_modified	timestamp(14)	YES		NULL	
display_name	varchar(100)	YES		NULL	
sip_methods	varchar(100)	YES		any	
+---------------+--------------------------+------+-----+---------------------+-------+
8 rows in set (0.00 sec)

mysql> desc aliases;
+---------------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------+---------------+------+-----+---------+-------+
alias	varchar(255)		PRI		
primary_user	varchar(255)				
last_modified	timestamp(14)	YES		NULL	
+---------------+---------------+------+-----+---------+-------+
3 rows in set (0.00 sec)

Default values are shown below.

user : default@cs.columbia.edu
hash_value : 421f557ae325c7b739a135e4683706ef
realm : cs.columbia.edu
sip_groups : cgi voicemail
auth : never
algorithm : MD5
sip_methods : REGISTER INVITE any
remote_user : NULL
busy : rtsp://SERVER/audio/welcome.au
norespone : rtsp://SERVER/audio/welcome.au
message_template:
To: [email $to]
Reply-To: [email $from]
Subject: voice mail -- $subject
Priority: $priority

Dear $name,

81

Voice mail from [dataurl $from $from] has arrived.
You can play the message by using QuickTime using
url $rtspurl or
by going to the web page at $httpurl.

- $administrator

--
This mail was automatically generated by the vmail system.

um_timeout : 10
max_msgsize_kb:200
last_modified: 20010424085810
gwclass : student
email :default@cs.columbia.edu

The list of gateway classes are shown below.

mysql> select * from gwclass;
+---------+
| gwclass |
+---------+
| faculty |
| phd |
| staff |
| student |
+---------+
4 rows in set (0.02 sec)

A.5 DNS SRV record

SIP clients use DNS SRV records if available. A sample DNS zone file entry is shown below:

sip.tcp SRV 0 0 5060 sip-server.cs.columbia.edu.
SRV 1 0 5060 backup.ip-provider.net.

sip.udp SRV 0 0 5060 sip-server.cs.columbia.edu.
SRV 1 0 5060 backup.ip-provider.net.

According to RFC 2782, the protocol designations are to be prefixed by an underscore, so that the
correct entries are:

_sip._tcp SRV 0 0 5060 sip-server.cs.columbia.edu.
SRV 1 0 5060 backup.ip-provider.net.

_sip._udp SRV 0 0 5060 sip-server.cs.columbia.edu.
SRV 1 0 5060 backup.ip-provider.net.

DNS SRV records are supported by BIND 4.9.6 and newer, generally installed as named.
Currently registered SRV records:

sip.tcp.cs.columbia.edu SRV 0 0 5060 conductor.cs.columbia.edu
sip.udp.cs.columbia.edu SRV 0 0 5060 conductor.cs.columbia.edu
_sip._tcp.cs.columbia.edu SRV 0 0 5060 conductor.cs.columbia.edu

82

_sip._udp.cs.columbia.edu SRV 0 0 5060 conductor.cs.columbia.edu
_sip._tcp.cs.columbia.edu SRV 10 0 5060 erlang.cs.columbia.edu
_sip._udp.cs.columbia.edu SRV 10 0 5060 erlang.cs.columbia.edu
_sip._tcp.cs.columbia.edu SRV 20 0 5060 backbay.cs.columbia.edu
_sip._udp.cs.columbia.edu SRV 20 0 5060 backbay.cs.columbia.edu

83

